From material to tissue: Biomaterial development, scaffold fabrication, and tissue engineering

Dept. of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251
AIChE Journal (Impact Factor: 2.58). 10/2008; 54(12):3048 - 3067. DOI: 10.1002/aic.11610

ABSTRACT The need for techniques to facilitate the regeneration of failing or destroyed tissues remains great with the aging of the worldwide population and the continued incidence of trauma and diseases such as cancer. A 16-year history in biomaterial scaffold development and tissue engineering is examined, beginning with the synthesis of novel materials and fabrication of 3D porous scaffolds. Exploring cell-scaffold interactions and subsequently cellular delivery using biomaterial carriers, we have developed a variety of techniques for bone and cartilage engineering. In addition to delivering cells, we have utilized growth factors, DNA, and peptides to improve the in vitro and in vivo regeneration of tissues. This review covers important developments and discoveries within our laboratory, and the increasing breadth in the scope of our work within the expanding field of tissue engineering is presented. © 2008 American Institute of Chemical Engineers AIChE J, 2008

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interaction between cancer cells and immune system critically affects development, progression and treatment of human malignancies. Experimental animal models and conventional "in vitro" studies have provided a wealth of information on this interaction, currently used to develop immune-mediated therapies. Studies utilizing three-dimensional culture technologies have emphasized that tumor architecture dramatically influences cancer cell-immune system interaction by steering cytokine production and regulating differentiation patterns of myeloid cells, and decreasing the sensitivity of tumor cells to lymphocyte effector functions. Hypoxia and increased production of lactic acid by tumor cells cultured in 3D architectures appear to be mechanistically involved. 3D culture systems could be further developed to (i) include additional cell partners potentially influencing cancer cell-immune system interaction, (ii) enable improved control of hypoxia, and (iii) allow the use of freshly derived clinical cancer specimens. Such advanced models will represent new tools for cancer immunobiology studies and for pre-clinical assessment of innovative treatments.
    Advanced drug delivery reviews 05/2014; · 11.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Despite significant surgical advances over the last decades, segmental mandibular bone repair remains a challenge. In light of this, tissue engineering might offer a next step in the evolution of mandibular reconstruction. Purpose The purpose of the present report was to (1) systematically review preclinical in vivo as well as clinical literature regarding bone tissue engineering for mandibular continuity defects, and (2) to analyze their effectiveness. Materials and Methods An electronic search in the databases of the National Library of Medicine and ISI Web of Knowledge was carried out. Only publications in English were considered and the search was broadened to animals and humans. Furthermore, the reference lists of related review articles and publications selected for inclusion in this review were systematically screened. Results of histology data and amount of bone bridging were chosen as primary outcome variables. However, for human reports, clinical radiographic evidence was accepted for defined primary outcome variable. The biomechanical properties, scaffold degradation as well as clinical wound healing were selected as co- outcome variables. Results The electronic search in the databases of the National Library of Medicine and ISI Web of Knowledge resulted in the identification of 6727 and 5017 titles, respectively. Thereafter, title assessment and hand search resulted in 128 abstracts, 101 full-text articles and 29 scientific papers reporting on animal experiments as well as 11 papers presenting human data on the subject of tissue engineered reconstruction of mandibular continuity defects that could be included in the present review. Conclusions It was concluded that: (1) published preclinical in vivo as well as clinical data are limited, and (2) tissue engineered approaches demonstrate some clinical potential as an alternative to autogenous bone grafting.
    Tissue Engineering Part B Reviews 07/2013; · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work presents bioactive-glass-reinforced gellan-gum spongy-like hydrogels (GG-BAG) as novel hydrophilic materials for use as the scaffolding in bone-tissue engineering. The reinforcement with bioactive-glass particles resulted in an improvement to the microstructure and to the mechanical properties of the material. These mechanical properties were found to be dependent on the composition and improved with the amount of bioactive glass; however, values necessary to accommodate biomechanical loading were not achieved in this study. Nevertheless, by incorporating the bioactive-glass particles, the composite material acquired the ability to form an apatite layer when soaked in simulated body fluid. Furthermore, human-adipose-derived stem cells were able to adhere and spread within the gellan-gum, spongy-like hydrogels reinforced with the bioactive glass, and remain viable, which is an important result when considering their use in bone-tissue engineering. Thus, hydrogels based on gellan gum and bioactive glass are promising biomaterials for use either alone or with cells, and with the potential for use in osteogenic differentiation.
    Materials Science and Engineering: C. 01/2014; 43:27–36.


Available from