Conformational analysis of putative regulatory subunit D of the toluene/o‐xylene‐monooxygenase complex from Pseudomonas stutzeri OX1

Centro Internazionale di Servizi di Spettrometria di Massa, 80131 Napoli, Italy
Protein Science (Impact Factor: 2.74). 12/2008; 10(3):482 - 490. DOI: 10.1110/ps.35701

ABSTRACT A gene cluster isolated from Pseudomonas stutzeri OX1 genomic DNA and containing six ORFs codes for toluene/o-xylene-monooxygenase. The putative regulatory D subunit was expressed in Escherichia coli and purified. Its protein sequence was verified by mass spectrometry mapping and found to be identical to the sequence predicted on the basis of the DNA sequence. The surface topology of subunit D in solution was probed by limited proteolysis carried out under strictly controlled conditions using several proteases as proteolytic probes. The same experiments were carried out on the homologous P2 component of the multicomponent phenol hydroxylase from Pseudomonas putida CF600. The proteolytic fragments released from both proteins in their native state were analyzed by electrospray mass spectrometry, and the preferential cleavage sites were assessed.The results indicated that despite the relatively high similarity between the sequences of the two proteins, some differences in the distribution of preferential proteolytic cleavages were detected, and a much higher conformational flexibility of subunit D was inferred. Moreover, automatic modeling of subunit D was attempted, based on the known three-dimensional structure of P2. Our results indicate that, at least in this case, standard modeling procedures based on automatic alignment on the structure of P2 fail to produce a model consistent with limited proteolysis experimental data. Thus, it is our opinion that reliable techniques such as limited proteolysis can be employed to test three-dimensional models and highlight problems in automatic model building.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged diiron center. In this study, we investigated the influence of the hydroxylases, regulatory proteins, and electron-transfer components of these systems on substrate (phenol; NADH) consumption and product (catechol; H(2)O(2)) generation. Single-turnover experiments revealed that only complete systems containing all three or four protein components are capable of oxidizing phenol, a major substrate for both enzymes. Under ideal conditions, the hydroxylated product yield was ∼50% of the diiron centers for both systems, suggesting that these enzymes operate by half-sites reactivity mechanisms. Single-turnover studies indicated that the PH and ToMO electron-transfer components exert regulatory effects on substrate oxidation processes taking place at the hydroxylase actives sites, most likely through allostery. Steady state NADH consumption assays showed that the regulatory proteins facilitate the electron-transfer step in the hydrocarbon oxidation cycle in the absence of phenol. Under these conditions, electron consumption is coupled to H(2)O(2) formation in a hydroxylase-dependent manner. Mechanistic implications of these results are discussed.
    Biochemistry 03/2011; 50(11):1788-98. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid fibrils of patients treated with regular hemodialysis essentially consists of beta2-microglobulin (beta2-m) and its truncated species DeltaN6beta2-m lacking six residues at the amino terminus. The truncated fragment has a more flexible three-dimensional structure and constitutes an excellent candidate for the analysis of a protein in the amyloidogenic conformation. The surface topology of synthetic fibrils obtained from intact beta2-m and truncated DeltaN6beta2-m was investigated by the limited proteolysis/mass spectrometry approach that appeared particularly suited to gain insights into the structure of beta2-m within the fibrillar polymer. The distribution of prefential proteolytic sites observed in both fibrils revealed that the central region of the protein, which had been easily cleaved in the full-length globular beta2-m, was fully protected in the fibrillar form. In addition, the amino- and carboxy-terminal regions of beta2-m became exposed to the solvent in the fibrils, whereas they were masked completely in the native protein. These data indicate that beta2-m molecules in the fibrils consist of an unaccessible core comprising residues 20-87 with the strands I and VIII being not constrained in the fibrillar polymer and exposed to the proteases. Moreover, proteolytic cleavages observed in vitro at Lys 6 and Lys 19 reproduce specific cleavages that have to occur in vivo to generate the truncated forms of beta2-m occurring in natural fibrils. On the basis of these data, a possible mechanism for fibril formation from native beta2-m is discussed and an explanation for the occurrence of truncated protein species in natural fibrils is given.
    Protein Science 11/2002; 11(10):2362-9. · 2.74 Impact Factor
  • Studies in Surface Science and Catalysis - STUD SURF SCI CATAL. 01/2001; 132:849-852.

Full-text (2 Sources)

Available from
Sep 1, 2014