Article

Involvement of pectolytic micro‐organisms in coffee fermentation

International Journal of Food Science & Technology (Impact Factor: 1.24). 01/2002; 37(2):191 - 198. DOI: 10.1046/j.1365-2621.2002.00556.x

ABSTRACT During the fermentation of Coffea arabica L., the most frequently found pectolytic bacteria were Erwinia herbicola and Klebsiella pneumoniae. These micro-organisms produce pectatelyase which is unable to depolymerize esterified pectins of mucilage without previous de-esterification. Furthermore, the optimal activities are observed at pH 8.5 whereas fermentation conditions are acidic (5.3–3.5). The major lactic acid bacteria, Leuconostoc mesenteroides, do not produce pectolytic enzymes. Only a Lactobacillus brevis strain, rarely isolated with a low frequency, shows a polygalacturonase activity compatible with fermentation conditions. Mucilage decomposition seems to be correlated to acidification and not to enzymatic pectolysis. Inoculation with pectolytic micro-organisms allows microbiological control of the fermentation but does not speed up the process. It would be preferable to use lactic acid bacteria so that the pH remained as close as possible to natural fermentation, where acidification is important. This practice would standardize the coffee fermentation microflora and therefore control the end product quality.

2 Bookmarks
 · 
248 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The coffee fermentation is characterized by the presence of different microorganisms belonging to the groups of bacteria, fungi and yeast. The objectives of this work were to select pectinolytic microorganisms isolated from coffee fermentations and evaluate their performance on coffee pulp culture medium. The yeasts and bacteria isolates were evaluated for their activity of polygalacturonase (PG), pectin lyase (PL) and pectin methylesterase (PME) and metabolites production. Among 127 yeasts isolates and 189 bacterial isolates, 15 were pre-selected based on their ability to produce PL and organic compounds. These isolates were strains identified as Bacillus cereus, Bacillus megaterium, Bacillus subtilis, Candida parapsilosis, Pichia caribbica, Pichia guilliermondii and Saccharomyces cerevisiae. When cultivated in Coffee peel and pulp media in single culture or two by two mixed inocula, different behavior concerning to PME, PL and PG were found. The two principal components PC1 and PC2 accounted for 45.27 and 32.02 % of the total variance. UFLA CN727 and UFLA CN731 strains were grouped in the positive part of PC1 being characterized by 1,2-propanediol, hexanoic acid, decanoic acid, nonanoic acid and ethyl acetate. The UFLA CN448 and UFLA CN724 strains were grouped in the negative part of PC1 and were mainly characterized by guaiacol, butyric acid and citronellol. S. cerevisiae UFLACN727, P. guilliermondii UFLACN731 and C. parapsilosis UFLACN448 isolates are promising candidates to be tested in future studies as coffee starter cultures.
    MIRCEN Journal of Applied Microbiology and Biotechnology 09/2012; · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coffee, one of the most popular beverages, is consumed by millions of people every day. Traditionally, coffee beneficial effects have been attributed solely to its most intriguing and investigated ingredient, caffeine, but it is now known that other compounds also contribute to the valuable properties of this beverage. The role of coffee brew consumption in preventing some severe and prevalent diseases justifies its classification as a functional beverage. These properties are determined directly by the composition of the green beans and the changes that occur during roasting. On the other hand, by-products of coffee fruit and bean processing can also be considered as potential functional ingredients for the food industry. The coffee husks, peel and pulp, which comprises nearly 45% of the cherry, are one of the main by-products of coffee agro-industry and might be a valuable material for several purposes, including extraction of caffeine and polyphenols. Other byproducts of coffee processing have been less studied, such as the mucilage and the parchment; however, they might have a high potential as a source of important ingredients as well. Furthermore, the use of the roasted coffee silverskin as a dietary fiber rich ingredient and for its antioxidative properties has also been evaluated. Finally, spent beans have been studied mainly for their antioxidative properties. The aim of this paper is to compile recent information on the functional properties of coffee, coffee beans and by-products in terms of the associated potential health benefits. The data in this review have been organized in sections according to the coffee product or by-product.
    Food Research International 01/2012; 46:488-495. · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During wet processing of coffee, the ripe cherries are pulped, then fermented and dried. This study reports an experimental approach for target identification and selection of indigenous coffee yeasts and their potential use as starter cultures during the fermentation step of wet processing. A total of 144 yeast isolates originating from spontaneously fermenting coffee beans were identified by molecular approaches and screened for their capacity to grow under coffee-associated stress conditions. According to ITS-rRNA gene sequencing, Pichia fermentans and Pichia kluyveri were the most frequent isolates, followed by Candida Candida glabrata, quercitrusa, Saccharomyces sp., Pichia guilliermondii, Pichia caribbica and Hanseniaspora opuntiae. Nine stress-tolerant yeast strains were evaluated for their ability to produce aromatic compounds in a coffee pulp simulation medium and for their pectinolytic activity. P. fermentans YC5.2 produced the highest concentrations of flavor-active ester compounds (viz., ethyl acetate and isoamyl acetate), while Saccharomyces sp. YC9.15 was the best pectinase-producing strain. The potential impact of these selected yeast strains to promote flavor development in coffee beverages was investigated for inoculating coffee beans during wet fermentation trials at laboratory scale. Inoculation of a single culture of P. fermentans YC5.2 and co-culture of P. fermentans YC5.2 and Saccharomyces sp. YC9.15 enhanced significantly the formation of volatile aroma compounds during the fermentation process compared to un-inoculated control. The sensory analysis indicated that the flavor of coffee beverages was influenced by the starter cultures, being rated as having the higher sensory scores for fruity, buttery and fermented aroma. This demonstrates a complementary role of yeasts associated with coffee quality through the synthesis of yeast-specific volatile constituents. The yeast strains P. fermentans YC5.2 and Saccharomyces sp. YC9.15 have a great potential for use as starter cultures in wet processing of coffee and may possibly help to control and standardize the fermentation process and produce coffee beverages with novel and desirable flavor profiles.
    International journal of food microbiology. 07/2014; 188C:60-66.

Full-text (2 Sources)

View
751 Downloads
Available from
May 22, 2014