Article

Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

Vaccine & Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
PLoS ONE (Impact Factor: 3.53). 06/2012; 7(6):e37818. DOI: 10.1371/journal.pone.0037818
Source: PubMed

ABSTRACT Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV.
Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel's clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel's criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV.
The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in Black women. Tools developed in this project can be used to study microbial ecology in diverse settings at high resolution.

Download full-text

Full-text

Available from: Sujatha Srinivasan, Jun 27, 2015
0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human vagina is colonized by a variety of indigenous microflora; in healthy individuals the predominant bacterial genus is Lactobacillus while those with bacterial vaginosis (BV) carry a variety of anaerobic representatives of the phylum Actinobacteria. In this study, we evaluated the antimicrobial activity of benzoyl peroxide (BPO) encapsulated in a hydrogel against Gardnerella vaginalis, one of the causative agents of BV, as well as indicating its safety for healthy human lactobacilli. Herein, it is shown that in well diffusion assays G. vaginalis is inhibited at 0.01% hydrogel-encapsulated BPO and that the tested Lactobacillus spp. can tolerate concentrations of BPO up to 2.5%. In direct contact assays (cells grown in a liquid culture containing hydrogel with 1% BPO or BPO particles), we demonstrated that hydrogels loaded with 1% BPO caused 6-log reduction of G. vaginalis. Conversely, three of the tested Lactobacillus spp. were not inhibited while L. acidophilus growth was slightly delayed. The rheological properties of the hydrogel formulation were probed using oscillation frequency sweep, oscillation shear stress sweep, and shear rate sweep. This shows the gel to be suitable for vaginal application and that the encapsulation of BPO did not alter rheological properties.
    Infectious Diseases in Obstetrics and Gynecology 12/2013; 2013:909354. DOI:10.1155/2013/909354
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.
    Methods in Ecology and Evolution 06/2013; 4(6):566-572. DOI:10.1111/2041-210X.12042 · 5.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our view of the microbial world and its impact on human health is changing radically with the ability to sequence uncultured or unculturable microbes sampled directly from their habitats, ability made possible by fast and cheap next generation sequencing technologies. Such recent developments represents a paradigmatic shift in the analysis of habitat biodiversity, be it the human, soil or ocean microbiome. We review here some research examples and results that indicate the importance of the microbiome in our lives and then discus some of the challenges faced by metagenomic experiments and the subsequent analysis of the generated data. We then analyze the economic and social impact on genomic-medicine and research in both developing and developed countries. We support the idea that there are significant benefits in building capacities for developing high-level scientific research in metagenomics in developing countries. Indeed, the notion that developing countries should wait for developed countries to make advances in science and technology that they later import at great cost has recently been challenged.