Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress.

State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China.
Molecular Biology Reports (Impact Factor: 1.96). 06/2012; 39(9):8645-54. DOI: 10.1007/s11033-012-1719-4
Source: PubMed

ABSTRACT Soil salinization can lead to environmental and ecological problems worldwide. Abiotic stressors, including salinity, are suspected to regulate microRNA (miRNA) expression. Plants exposed to such abiotic stressors express specific miRNAs, which are genes encoding small non-coding RNAs of 20-24 nucleotides. miRNAs are known to exist widely in plant genomes, and are endogenous. A previous study used miRNA microarray technology and poly(A) polymerase-mediated qRT-PCR technology to analyze the expression profile of miRNAs in two types of plants, Populus cathayana L. (salt-sensitive plants) and Salix matsudana Koidz (highly salinity-tolerant plants), both belonging to the Salicaceae family. miRNA microarray hybridization revealed changes in expression of 161 miRNAs P. cathayana and 32 miRNAs in S. matsudana under salt stress. Differences in expression indicate that the same miRNA has different expression patterns in salt-sensitive plants and salt-tolerant plants under salt stress. These indicate that changes in expression of miRNAs might function as a response to varying salt concentrations. To examine this, we used qRT-PCR to select five miRNA family target genes involved in plant responses to salt stress. Upon saline treatment, the expressions of both ptc-miR474c and ptc-miR398b in P. cathayana were down-regulated, but were up-regulated in S. matsudana. Expression of the miR396 family in both types of plants was suppressed. Furthermore, we have analyzed the different expression patterns between P. cathayana and S. matsudana. Findings of this study can be utilized in future investigations of post-transcriptional gene regulation in P. cathayana and S. matsudana under saline stress.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Results: To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using high-throughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Conclusions: This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.
    BMC Genetics 06/2014; 15(Suppl 1):S6. DOI:10.1186/1471-2156-15-S1-S6 · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unravelled. Here, we review the current knowledge of the biological functions GRFs perform and survey available molecular data to illustrate how they exert their roles at the cellular level. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salt stress exerts negative effects on plant growth, development and yields, with roots being the primary site of both perception and damage. Salix matsudana (Chinese willow) is tolerant of high salinity. However, genes associated with this trait were rarely characterized. Therefore, we first performed salt-stress treatment on S. matsudana plants, then identified differentially expressed genes by comparison of salt-treated roots and untreated controls using microarray analysis. A total of 403 salt-responsive genes were identified, of which 239 were repressed and 164 were up-regulated. Functional classification analysis revealed that these genes belonged to families encoding proteins involved in metabolism, regulation of transcription, signal transduction, hormone responses, abiotic stress responses, and other processes related to growth and development. This suggested that when S. matsudana was confronted with salt stress, coordinated adjustments are made to physiological and biochemical processes, which would then allow more resources to be allocated to protective mechanisms to avoid salt injury. The expression patterns of representative genes were further validated and the diversity of the temporal profiles indicated that a combination of several genes and the initiation of diverse pathways performed functions in S. matsudana salt tolerance. This work represents the first study employing microarrays to investigate salt tolerance in S. matsudana. The data presented herein enhance our understanding of the molecular mechanisms of S. matsudana responses to salinity stress and lay the groundwork for genetic engineering strategies to improve stress tolerance of agronomically important species.
    Molecular Biology Reports 07/2014; 41(10). DOI:10.1007/s11033-014-3539-1 · 1.96 Impact Factor


Available from
May 31, 2014