Article

Does microglial dysfunction play a role in autism and Rett syndrome?

M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute and Department of Pathology and Laboratory Medicine, Sacramento, CA, USA.
Neuron Glia Biology (Impact Factor: 6.64). 04/2012; 7(1):85-97. DOI: 10.1017/S1740925X1200004X
Source: PubMed

ABSTRACT Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
    Current Neuropharmacology 03/2014; 12(2):148-67. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proper operation of the mammalian brain requires dynamic interactions between neurones and glial cells. Various types of glial cells are susceptible to morpho-functional changes in a variety of brain pathological states, including toxicity, neurodevelopmental, neurodegenerative and psychiatric disorders. Morphological modifications include a change in the glial cell size and shape; the latter is evident by changes of the appearance and number of peripheral processes. The most blatant morphological change is associated with the alteration of the sheer number of neuroglia cells in the brain. Functionally, glial cells can undergo various metabolic and biochemical changes, the majority of which reflect upon homeostasis of neurotransmitters, in particular that of glutamate, as well as on defence mechanisms provided by neuroglia. Not only glial cells exhibit changes associated with the pathology of the brain but they also change with brain aging.
    Cell and Tissue Research 03/2014; · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aetiology of autism spectrum disorders remains unclear although a growing number of associated genetic abnormalities and environmental factors have been discovered in recent decades. These advancements coincided with a remarkable increase in the comprehension of physiological functions and pathological potential of neuroglia in the central nervous system that led to a notion of fundamental contribution of glial cells into multiple neuropathologies, including neuropsychiatric and developmental disorders. Growing evidence indicates a role for deregulation of astroglial control over homeostasis and plastic potential of neural networks as well as microglial malfunction and neuroinflammatory response in the brains of autistic patients. In this review, we shall summarize the status and pathological potential of neuroglia and argue for neuroglial roots of autistic disorders.
    Neuroscience & Biobehavioral Reviews 11/2013; 38:160-172. · 10.28 Impact Factor