Article

Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers

Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main , Frankfurt/Main , Germany.
Molecular Membrane Biology (Impact Factor: 1.73). 06/2012; 30(1). DOI: 10.3109/09687688.2012.693212
Source: PubMed

ABSTRACT Abstract Routine strategies for the cell-free production of membrane proteins in the presence of detergent micelles and for their efficient co-translational solubilization have been developed. Alternatively, the expression in the presence of rationally designed lipid bilayers becomes interesting in particular for biochemical studies. The synthesized membrane proteins would be directed into a more native-like environment and cell-free expression of transporters, channels or other membrane proteins in the presence of supplied artificial membranes could allow their subsequent functional analysis without any exposure to detergents. In addition, lipid-dependent effects on activity and stability of membrane proteins could systematically be studied. However, in contrast to the generally efficient detergent solubilization, the successful stabilization of membrane proteins with artificial membranes appears to be more difficult. A number of strategies have therefore been explored in order to optimize the co-translational association of membrane proteins with different forms of supplied lipid bilayers including liposomes, bicelles, microsomes or nanodiscs. In this review, we have compiled the current state-of-the-art of this technology and we summarize parameters which have been indicated as important for the co-translational association of cell-free synthesized membrane proteins with supplied membranes.

Download full-text

Full-text

Available from: Umesh Ghoshdastider, Aug 27, 2015
6 Followers
 · 
320 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanodiscs (NDs) enable the analysis of membrane proteins (MP) in natural lipid bilayer environments. In combination with cell-free (CF) expression, they could be used for the co-translational insertion of MPs into defined membranes. This new approach allows the characterization of MPs without detergent contact and it could help to identify effects of particular lipids on catalytic activities. Association of MPs with different ND types, quality of the resulting MP/ND complexes as well as optimization parameters are still poorly analyzed. This study describes procedures to systematically improve CF expression protocols for the production of high quality MP/ND complexes. In order to reveal target dependent variations, the co-translational ND complex formation with the bacterial proton pump proteorhodopsin (PR), with the small multidrug resistance transporters SugE and EmrE, as well as with the Escherichia coli MraY translocase was studied. Parameters which modulate the efficiency of MP/ND complex formation have been identified and in particular effects of different lipid compositions of the ND membranes have been analyzed. Recorded force distance pattern as well as characteristic photocycle dynamics indicated the integration of functionally folded PR into NDs. Efficient complex formation of the E. coli MraY translocase was dependent on the ND size and on the lipid composition of the ND membranes. Active MraY protein could only be obtained with ND containing anionic lipids, thus providing new details for the in vitro analysis of this pharmaceutically important protein.
    Biochimica et Biophysica Acta 08/2012; 1818(12):3098-106. DOI:10.1016/j.bbamem.2012.08.007 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human endothelin receptors are members of the rhodopsin class A of G-protein coupled receptors and key modulators of blood pressure regulation. Their functional in vitro characterization has widely been limited by the availability of high quality samples. We have optimized cell-free expression protocols for the human endothelin A and endothelin B receptors by implementing co-translational association approaches of the synthesized proteins with supplied liposomes or nanodiscs. Efficiency of membrane association and ligand binding properties of the receptors have systematically been studied in correlation to different membrane environments and lipid types. Ligand binding was analyzed by a number of complementary assays including radioassays, surface plasmon resonance and fluorescence measurements. High affinity binding of the peptide ligand ET-1 to both endothelin receptors could be obtained with several conditions and highest Bmax values were measured in association with nanodiscs. We could further obtain the characteristic differential binding pattern of the two endothelin receptors with a panel of selected agonists and antagonists. Two intrinsic properties of the functionally folded endothelin B receptor, the proteolytic processing based on conformational recognition as well as the formation of SDS-resistant complexes with the peptide ligand ET-1, were observed with samples obtained from several cell-free expression conditions. High affinity and specific binding of ligands could furthermore be obtained with non-purified receptor samples in crude cell-free reaction mixtures, thus providing new perspectives for fast in vitro screening applications.
    Biochimica et Biophysica Acta 06/2013; 1828(9). DOI:10.1016/j.bbamem.2013.05.031 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-channel electrophysiology with lipid bilayer systems requires ion channel expression, purification from cell culture, and reconstitution in proteoliposomes for delivery to a planar bilayer. Here we demonstrate that single-channel current measurements of the potassium channels KcsA and hERGS5-S6 can be obtained by direct insertion in interdroplet lipid bilayers from microliters of a cell-free expression medium.
    The Analyst 10/2013; DOI:10.1039/c3an01540h · 4.11 Impact Factor
Show more