Linking habitat use to range expansion rates in fragmented landscapes: a metapopulation approach

Ecography (Impact Factor: 4.21). 01/2010; 33(1):73 - 82. DOI: 10.1111/j.1600-0587.2009.06038.x

ABSTRACT Temperature increases because of climate change are expected to cause expansions at the high latitude margins of species distributions, but, in practice, fragmented landscapes act as barriers to colonization for most species. Understanding how species distributions will shift in response to climate change therefore requires techniques that incorporate the combined effects of climate and landscape-scale habitat availability on colonization rates. We use a metapopulation model (Incidence Function Model, IFM) to test effects of fine-scale habitat use on patterns and rates of range expansion by the butterfly Hesperia comma. At its northern range margin in Britain, this species has increased its breadth of microhabitat use because of climate warming, leading to increased colonization rates. We validated the IFM by reconstructing expansions in five habitat networks between 1982 and 2000, before using it to predict metapopulation dynamics over 100 yr, for three scenarios based on observed changes to habitat use. We define the scenarios as “cold-world” (only hot, south-facing 150–250° hillsides are deemed warm enough), “warm-world” in which 100–300° hillsides can be populated, and “hot-world”, where the background climate is warm enough to enable use of all aspects (as increasingly observed). In the simulations, increased habitat availability in the hot-world scenario led to faster range expansion rates, and to long-term differences in distribution size and pattern. Thus, fine-scale changes in the distribution of suitable microclimates led to landscape-scale changes in population size and colonization rate, resulting in coarse-scale changes to the species distribution. Despite use of a wider range of habitats associated with climate change, H. comma is still expected to occupy a small fraction of available habitat in 100 yr. The research shows that metapopulation models represent a potential framework to identify barriers to range expansion, and to predict the effects of environmental change or conservation interventions on species distributions and persistence.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest.
    PLoS ONE 10/2014; 9(10):e110219. DOI:10.1371/journal.pone.0110219 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Der Biotopverbund gilt als eine zentrale Anpassungsstrategie des Naturschutzes an die Folgen des Klimawandels. In der vorliegenden Arbeit wurde untersucht, welchen Beitrag Biotopverbundsysteme zwischen Deutschland und den Niederlanden zur Anpassung von klimawandelbedingten Arealverschiebungen von Arten leisten können. Durch eine vergleichende Analyse von Verbreitungsdaten und Klimahüllen-Modellen von 846 Tierarten (Säugetiere, Vögel, Reptilien, Amphibien und Tagfalter) wurden 216 Arten identifiziert, die in Zukunft potenziell grenzüberschreitende Arealverschiebungen aufgrund von Gewinnen (99 Arten) oder Verlusten (117 Arten) von klimatisch geeigneten Gebieten erfahren werden. Für ausgewählte Arten der Wälder (Brenthis daphne, Dendrocopos medius) sowie der Gewässer- und Feuchtlebensräume (Maculinea teleius, Lutra lutra) wurde die funktionale Kohärenz der vorhandenen Biotopverbundsysteme modelliert und vor dem Hintergrund der Arealverschiebungen bewertet. Dadurch, dass Wanderungskorridore und Kernlebensräume erhalten, entwickelt und neu geschaffen werden, können die Arten der Wälder und Lutra lutra potenziell bei der Realisierung der Arealverschiebungen unterstützt werden. Die für den Biotopverbund relevanten Bereiche wurden grenzüberschreitend räumlich dargestellt. Für die wenig mobile Tagfalterart Maculinea teleius ist die Kohärenz des Netzwerkes vermutlich zu gering, so dass eine Umsiedlung in klimatisch geeignete Lebensräume als Anpassungsmaßnahme vorgeschlagen wird. Die Ergebnisse verdeutlichen, dass sich Biotopverbundplanungen in Zeiten des Klimawandels nicht nur auf die Gebiete konzentrieren sollten, in denen Zielarten bereits heute vorkommen. Mit der vorgestellten Methode können die potenziellen Auswirkungen von Klimaänderungen mit Relevanz für den grenzüberschreitenden Biotopverbund ermittelt werden, so dass eine Grundlage für Maßnahmenkonzepte auf regionaler und lokaler Ebene zur Verfügung steht.
    Basic and Applied Ecology 12/2014; DOI:10.1016/j.baae.2014.09.007 · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.
    Ecological Indicators 06/2015; 53. DOI:10.1016/j.ecolind.2015.01.028 · 3.23 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014