A Novel Zero Discharge Intensive Seawater Recirculating System for the Culture of Marine Fish

Journal of the World Aquaculture Society (Impact Factor: 0.75). 01/2003; 34(3):344 - 358. DOI: 10.1111/j.1749-7345.2003.tb00072.x

ABSTRACT Results are presented of a zero-discharge marine recirculating system used for the culture of gilthead seabream Sparus aurata. Operation of the system without any discharge of water and sludge was enabled by recirculation of effluent water through two separate treatment loops, an aerobic trickling filter and a predominantly anoxic sedimentation basin, followed by a fluidized bed reactor. The fish basin was stocked for the first 6 mo with red tilapia Oreochromis niloticus × O. aureus at an initial density of 16 kg/m3. During this period salinity was raised from 0 to 20 parts per thousand. Then, gilthead seabream, stocked at an initial density of 21 kg/m3, replaced tilapia at day 167 and were cultured for an additional 225 d. Non steady-state inorganic nitrogen transformations occurred as a result of these salinity changes. After day 210, the system operated at all times with those water quality parameters considered critical for successful operation of mariculture systems, within acceptable limits. Thus ammonia, nitrite, and nitrate concentrations did not exceed 1.0-mg total ammonia-N/ L, 0.5-mg NO2:-N/L and 50-mg NO3-N/L, respectively. Sulfide levels in the fish basin were below detection limits and oxygen > 6 mg/L after the oxygen generator was added at day 315. Ammonia, produced in the fish basin and to a lesser extent in the sedimentation basin, was converted to nitrate in the aerobic trickling filter. Nitrate removal took place in the sedimentation basin and to a lesser extent in the fluidized bed reactor. Sludge, remaining in the sedimentation basin at the end of the experimental period, accounted for 9.2% of the total feed dry matter addition to the system. The system was disease-free for the entire year and fish at harvest were of good quality. Water consumption for production of 1 kg of tilapia was 93 L and 214 L for production of 1 kg of gilthead seabream. Additional growth performance data of gilthead seabream cultured in a similar but larger system are presented. During 164 d of operation of the latter system, maximum stocking densities reached 50 kgl M3 and fish biomass production was 27.7 kg/m3. Relatively poor fish survival and growth resulted from occasional technical failures of this pilot system.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brackish/marine recirculation aquaculture systems (RAS) produce a relatively small but concentrated waste stream. The produced waste is perceived as a constraint for sustainable development of brackish/marine RAS. Appropriate disposal of sludge or waste from brackish/marine RAS is of great importance for widespread acceptance and implementation. Anaerobic stabilization of RAS sludge is considered as a potential cost-effective methodology to achieve effective sludge reduction and biogas production. Therefore, this review presents an overview of studies conducted on anaerobic digestion of sludge from brackish/marine RAS. Several researchers have shown that specific methane yield (SMY) of anaerobic digestion of sludges from brackish/marine RAS is relatively low, mainly in the range of 0.001-0.184 m(3) CH4 (STP)/kg COD of sludge added. The possible reasons for low SMY are reviewed in this work and can be mainly attributed to applied experimental set-ups, particularly improper inoculum, and high salinity, mainly resulting from high sodium cation levels. This review also evaluates the potentials and limitations for phosphorus recovery from the waste streams. Additionally, corresponding approaches to enhance specific methanogenic activities are proposed, particularly about the need for further thickening sludges from brackish/marine RAS in order to increase SMY from the wastes and downsize the anaerobic digestion units.
    Journal of Environmental Management 10/2013; 131C:44-54. · 3.06 Impact Factor
  • EurOCEAN 2000 29 August to 2 September 2000; 01/2001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible.
    FEMS Microbiology Ecology 03/2008; 63(2):192-204. · 3.56 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014