Development of Multiplex PCR to Detect Five Pythium Species Related to Turfgrass Diseases

Journal of Phytopathology (Impact Factor: 1). 08/2010; 158(9):609 - 615. DOI: 10.1111/j.1439-0434.2009.01660.x

ABSTRACT The objective of this study was to develop multiplex PCR detection method for five Pythium species associated with turfgrass diseases, Pythium aphanidermatum, Pythium arrhenomanes, Pythium graminicola, Pythium torulosum and Pythium vanterpoolii. Species-specific primers and two common primers were designed based on the sequences of the internal transcribed spacer region of ribosomal DNA. Another primer set by which all organisms would be amplified in 18S rDNA was used as a positive control. When these total nine primers were applied to the multiplex PCR, all species were individually discriminated in the mixture of five species culture DNA. Furthermore, all five Pythium species were detected in naturally infected plants using the multiplex PCR.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fungus Venturia nashicola is the causal agent of scab on Asian pears. For the rapid and reliable identification as well as sensitive detection of V. nashicola, a PCR-based technique was developed. DNA fingerprints of three closely related species, V. nashicola, V. pirina, and V. inaequalis, were obtained by random amplified polymorphic DNA (RAPD) analysis. Two RAPD markers specific to V. nashicola were identified by PCR, after which two pairs of sequence characterized amplified region (SCAR) primers were designed from the nucleotide sequences of the markers. The SCAR primer pairs, designated as D12F/D12R and E11F/E11R, amplified 535-bp and 525-bp DNA fragments, respectively, only from genomic DNA of V. nashicola. The specificity of the primer sets was tested on strains representing three species of Venturia and 20 fungal plant pathogens. The nested PCR primer pair specific to V. nashicola was developed based on the sequence of the species-specific 525-bp DNA fragment amplified by primer set E11F/E11R. The internal primer pair Na11F/Na11R amplified a 235-bp fragment from V. nashicola, but not from any other fungal species tested. The nested PCR assay was sensitive enough to detect the specific fragment in 50 fg of V. nashicola DNA.
    The plant pathology journal 12/2013; 29(4). · 0.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A loop-mediated isothermal amplification (LAMP) reaction with a primer set designed from the rDNA ITS sequence of P. aphanidermatum was developed. Results of a specificity test using 57 strains of Pythium spp. indicated that the LAMP assay gave no cross reactions in other 39 Pythium species, 11 strains of Phytophthora spp. and eight other soil borne pathogens. The detection limit was 10 fg of genomic DNA, which was ten times the sensitivity of the polymerase chain reaction. The LAMP assay was applied to hydroponic solution samples from tomato fields, and the results were compared to those of the conventional plating method. LAMP was observed to be effective for the specific detection of P. aphanidermatum. Furthermore, P. aphanidermatum was detected directly in tomato roots infected with P. aphanidermatum without DNA extraction. The LAMP method established in this study is a simple, sensitive and rapid tool for the detection of P. aphanidermatum.
    European Journal of Plant Pathology 08/2013; 136(4). · 1.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lasiodiplodia theobromae (Pat.) Griff. & Maubl, Neofusicoccum parvum Pennycook & Samuels, N. mangiferae Syd. & P. Syd., and Fusicoccum aesculi Corda, all anamorphs of Botryosphaeriaceae species, are the causal agents of mango stem-end rot and fruit rot in Taiwan. Identification of these fungal species based on morphology has not been easy due to their extensive plasticity for some of the morphological characters. To aid reliable identification of Botryosphaeriaceae species associated with mango fruits, four pairs of species-specific primers were designed according to sequences of the ribosomal internal transcribed spacers (ITS), and a rapid method was established based on nested multiplex polymerase chain reaction (PCR) in this study. To perform the analysis, PCR was first run with ITS1 and ITS4 as the primers, followed by a second PCR with the addition of all four sets of species-specific primers. With this method, a low limit of 100 fg-1 pg of purified fungal DNA was detectable. It could also successfully detect L. theobromae, N. parvum, N. mangiferae and F. aesculi in total DNA extracted from inoculated mango fruits. This assay provides a rapid and sensitive method for the identification of Botryosphaeriaceae species and diagnosis of mango fruit rot and stem-end rot as well.
    European Journal of Plant Pathology 133(4). · 1.71 Impact Factor

Full-text (2 Sources)

Available from
Jul 3, 2014