Anatomical predictions of hearing in the North Atlantic right whale

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology (Impact Factor: 1.34). 05/2007; 290(6):734 - 744. DOI: 10.1002/ar.20527
Source: PubMed

ABSTRACT Some knowledge of the hearing abilities of right whales is important for understanding their acoustic communication system and possible impacts of anthropogenic noise. Traditional behavioral or physiological techniques to test hearing are not feasible with right whales. Previous research on the hearing of marine mammals has shown that functional models are reliable estimators of hearing sensitivity in marine species. Fundamental to these models is a comprehensive analysis of inner ear anatomy. Morphometric analyses of 18 inner ears from 13 stranded North Atlantic right whales (Eubalaena glacialis) were used for development of a preliminary model of the frequency range of hearing. Computerized tomography was used to create two-dimensional (2D) and 3D images of the cochlea. Four ears were decalcified and sectioned for histologic measurements of the basilar membrane. Basilar membrane length averaged 55.7 mm (range, 50.5 mm–61.7 mm). The ganglion cell density/mm averaged 1,842 ganglion cells/mm. The thickness/width measurements of the basilar membrane from slides resulted in an estimated hearing range of 10 Hz–22 kHz based on established marine mammal models. Additional measurements from more specimens will be necessary to develop a more robust model of the right whale hearing range. Anat Rec, 290:734–744, 2007. © 2007 Wiley-Liss, Inc.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development - ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells - are orchestrated by gradients of signaling molecules.
    Development 01/2012; 139(2):245-57. · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sound is a primary sensory cue for most marine mammals, and this is especially true for cetaceans. To passively and actively acquire information about their environment, cetaceans have some of the most derived ears of all mammals, capable of sophisticated, sensitive hearing and auditory processing. These capabilities have developed for survival in an underwater world where sound travels five times faster than in air, and where light is quickly attenuated and often limited at depth, at night, and in murky waters. Cetacean auditory evolution has capitalized on the ubiquity of sound cues and the efficiency of underwater acoustic communication. The sense of hearing is central to cetacean sensory ecology, enabling vital behaviours such as locating prey, detecting predators, identifying conspecifics, and navigating. Increasing levels of anthropogenic ocean noise appears to influence many of these activities. Here, we describe the historical progress of investigations on cetacean hearing, with a particular focus on odontocetes and recent advancements. While this broad topic has been studied for several centuries, new technologies in the past two decades have been leveraged to improve our understanding of a wide range of taxa, including some of the most elusive species. This chapter addresses topics including how sounds are received, what sounds are detected, hearing mechanisms for complex acoustic scenes, recent anatomical and physiological studies, the potential impacts of noise, and mysticete hearing. We conclude by identifying emerging research topics and areas which require greater focus.
    Advances in Marine Biology 01/2012; 63:197-246. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review addresses the functional organization of the mammalian cochlea under a comparative and evolutionary perspective. A comparison of the monotreme cochlea with that of marsupial and placental mammals highlights important evolutionary steps towards a hearing organ dedicated to process higher frequencies and a larger frequency range than found in non-mammalian vertebrates. Among placental mammals, there are numerous cochlear specializations which relate to hearing range in adaptation to specific habitats that are superimposed on a common basic design. These are illustrated by examples of specialist ears which evolved excellent high frequency hearing and echolocation (bats and dolphins) and by the example of subterranean rodents with ears devoted to processing low frequencies. Furthermore, structural functional correlations important for tonotopic cochlear organization and predictions of hearing capabilities are discussed.
    Hearing research 03/2011; 273(1-2):89-99. · 2.18 Impact Factor

Full-text (3 Sources)

Available from
May 28, 2014