Article

Non‐linear particle acceleration at non‐relativistic shock waves in the presence of self‐generated turbulence

INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Firenze, Italy
Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 09/2006; 371(3):1251 - 1258. DOI: 10.1111/j.1365-2966.2006.10739.x

ABSTRACT Particle acceleration at astrophysical shocks may be very efficient if magnetic scattering is self-generated by the same particles. This non-linear process adds to the non-linear modification of the shock due to the dynamical reaction of the accelerated particles on the shock. Building on a previous general solution of the problem of particle acceleration with arbitrary diffusion coefficients, we present here the first semi-analytical calculation of particle acceleration with both effects taken into account at the same time; charged particles are accelerated in the background of Alfvén waves that they generate due to the streaming instability, and modify the dynamics of the plasma in the shock vicinity.

0 Bookmarks
 · 
54 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼ 10−9 of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.
    Physics of Plasmas 05/2013; 20(5). · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Observation of Balmer lines from the region around the forward shock of supernova remnants may provide precious information on the shock dynamics and on the efficiency of particle acceleration at the shock. Aims: We calculate the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR 0509-67.5, as a function of the cosmic ray acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer line emission to infer the cosmic ray acceleration efficiency in this remnant. Methods: We use the recently developed non-linear theory of diffusive shock acceleration in the presence of neutrals. The semi-analytical approach that we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of both accelerated particles and turbulent magnetic field on the shock, and all channels of interaction between neutral atoms and background plasma that change the shock dynamics. Results: We achieve a quantitative assessment of the CR acceleration efficiency in SNR 0509-67.5 as a function of the shock velocity and different levels of electron-proton thermalization in the shock region. If the shock moves faster than ~4500 km/s, one can conclude that particle acceleration must be taking place with efficiency of several tens of percent. For lower shock velocity the evidence for particle acceleration becomes less clear because of the uncertainty in the electron-ion equilibration downstream. We also discuss the role of future measurements of the narrow Balmer line.
    Astronomy and Astrophysics 06/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Observation of Balmer lines from the region around the forward shock of supernova remnants may provide precious information on the shock dynamics and on the efficiency of particle acceleration at the shock. Aims. We calculate the Balmer line emission and the shape of the broad Balmer line for parameters values suitable for SNR RCW 86 (G315.4-2.3), as a function of the cosmic ray (CR) acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer line emission to infer the CR acceleration efficiency in this remnant. Methods. We use the recently developed non-linear theory of diffusive shock acceleration in the presence of neutrals. The semi-analytical approach that we have developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of both accelerated particles and turbulent magnetic field on the shock, and all channels of interaction between neutral hydrogen atoms and background ions that are relevant for the shock dynamics. Results. We derive from Balmer emission the CR acceleration efficiency in the SNR RCW 86. Since our calculation uses recent measurements of the shock proper motion, the results depend on the assumed distance to Earth. For a distance of 2 kpc the measured width of the broad Balmer line is compatible with the absence of CR acceleration. For a distance of 2.5 kpc, which is a widely used value in current literature, a CR acceleration efficiency of 5-30% is obtained, depending upon the electron-ion equilibration and the ionization fraction upstream of the shock. When information on Balmer emission is combined with the measured value of the downstream electron temperature, the CR acceleration efficiency can be constrained to be ~20%.
    11/2013;

Full-text

View
0 Downloads
Available from