The build‐up of the colour–magnitude relation in galaxy clusters since z∼ 0.8

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 01/2007; 374(3):809 - 822. DOI: 10.1111/j.1365-2966.2006.11199.x
Source: arXiv

ABSTRACT Using galaxy clusters from the ESO Distant Cluster Survey, we study how the distribution of galaxies along the colour–magnitude relation has evolved since z∼ 0.8. While red-sequence galaxies in all these clusters are well described by an old, passively evolving population, we confirm our previous finding of a significant evolution in their luminosity distribution as a function of redshift. When compared to galaxy clusters in the local Universe, the high-redshift EDisCS clusters exhibit a significant deficit of faint red galaxies. Combining clusters in three different redshift bins, and defining as ‘faint’ all galaxies in the range 0.4 ≳L/L*≳ 0.1, we find a clear decrease in the luminous-to-faint ratio of red galaxies from z∼ 0.8 to ∼0.4. The amount of such a decrease appears to be in qualitative agreement with predictions of a model where the blue bright galaxies that populate the colour–magnitude diagram of high-redshift clusters, have their star formation suppressed by the hostile cluster environment. Although model results need to be interpreted with caution, our findings clearly indicate that the red-sequence population of high-redshift clusters does not contain all progenitors of nearby red-sequence cluster galaxies. A significant fraction of these must have moved on to the red sequence below z∼ 0.8.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We derive deep $I$ band luminosity functions and colour-magnitude diagrams from HST imaging for eleven $0.2<z<0.6$ clusters observed at various stages of merging, and a comparison sample of five more relaxed clusters at similar redshifts. The characteristic magnitude $M^*$ evolves passively out to $z=0.6$, while the faint end slope of the luminosity function is $\alpha \sim -1$ at all redshifts. Cluster galaxies must have been completely assembled down to $M_I \sim -18$ out to $z=0.6$. We observe tight colour-magnitude relations over a luminosity range of up to 8 magnitudes, consistent with the passive evolution of ancient stellar populations. This is found in all clusters, irrespective of their dynamical status (involved in a collision or not, or even within subclusters for the same object) and suggests that environment does not have a strong influence on galaxy properties. A red sequence luminosity function can be followed to the limits of our photometry: we see no evidence of a weakening of the red sequence to $z=0.6$. The blue galaxy fraction rises with redshift, especially at fainter absolute magnitudes. We observe bright blue galaxies in clusters at $z > 0.4$ that are not encountered locally. Surface brightness selection effects preferentially influence the detectability of faint red galaxies, accounting for claims of evolution at the faint end.
    Monthly Notices of the Royal Astronomical Society 07/2013; 434(4). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15M ☉. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011M ☉, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ~ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ~ 0.75 have the same or less star formation per unit mass or galaxy as the field.
    The Astronomical Journal 09/2013; 146(4):84. · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of galaxy populations in the central region of the IRAC-selected, X-ray detected galaxy cluster Cl J1449+0856 at z=2. Based on a sample of spectroscopic and photometric cluster members, we investigate stellar populations and morphological structure of cluster galaxies over an area of ~0.7Mpc^2 around the cluster core. The cluster stands out as a clear overdensity both in redshift space, and in the spatial distribution of galaxies close to the center of the extended X-ray emission. The cluster core region (r<200 kpc) shows a clearly enhanced passive fraction with respect to field levels. However, together with a population of massive passive galaxies mostly with early-type morphologies, it also hosts massive actively star-forming, often highly dust-reddened sources. Close to the cluster center, a multi-component system of passive and star-forming galaxies could be the future BCG still assembling. We observe a clear correlation between passive stellar populations and an early-type morphology, in agreement with field studies at similar redshift. Passive early-type galaxies in this clusters are typically a factor 2-3 smaller than similarly massive early-types at z~0, but also on average larger by a factor ~2 than their field analogs at z~2, lending support to recent claims of an accelerated structural evolution in high-redshift dense environments. These results point towards the early formation of a population of massive galaxies, already evolved both in their structure and stellar populations, coexisting with still-actively forming massive galaxies in the central regions of young clusters 10 billion years ago.
    The Astrophysical Journal 05/2013; 772(2). · 6.73 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014