Article

The build‐up of the colour–magnitude relation in galaxy clusters since z∼ 0.8

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 01/2007; 374(3):809 - 822. DOI: 10.1111/j.1365-2966.2006.11199.x
Source: arXiv

ABSTRACT Using galaxy clusters from the ESO Distant Cluster Survey, we study how the distribution of galaxies along the colour–magnitude relation has evolved since z∼ 0.8. While red-sequence galaxies in all these clusters are well described by an old, passively evolving population, we confirm our previous finding of a significant evolution in their luminosity distribution as a function of redshift. When compared to galaxy clusters in the local Universe, the high-redshift EDisCS clusters exhibit a significant deficit of faint red galaxies. Combining clusters in three different redshift bins, and defining as ‘faint’ all galaxies in the range 0.4 ≳L/L*≳ 0.1, we find a clear decrease in the luminous-to-faint ratio of red galaxies from z∼ 0.8 to ∼0.4. The amount of such a decrease appears to be in qualitative agreement with predictions of a model where the blue bright galaxies that populate the colour–magnitude diagram of high-redshift clusters, have their star formation suppressed by the hostile cluster environment. Although model results need to be interpreted with caution, our findings clearly indicate that the red-sequence population of high-redshift clusters does not contain all progenitors of nearby red-sequence cluster galaxies. A significant fraction of these must have moved on to the red sequence below z∼ 0.8.

Full-text

Available from: Roser Pelló, May 03, 2015
0 Followers
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the role of the environment on galaxy evolution using a sample of 868 galaxies in the Virgo cluster and in its surrounding regions selected from the GUViCS Survey with the purpose of understanding the origin of the red sequence in dense environments. We collected multifrequency data covering the whole electromagnetic spectrum for most of the galaxies. We identify the different dynamical substructures composing the Virgo cluster and we calculate the local density of galaxies using different methods. We then study the distribution of galaxies belonging to the red sequence, the green valley, and the blue cloud within the different cluster substructures. Our analysis indicates that all the most massive galaxies are slow rotators and are the dominant galaxies of the different cluster substructures generally associated with a diffuse X-ray emission. They are probably the result of major merging events that occurred at early epochs. Slow rotators of lower stellar mass are also preferentially located within the different high-density substructures of the cluster. They are virialised within the cluster, thus Virgo members since its formation. They have been shaped by gravitational perturbations occurring within the infalling groups that later formed the cluster. On the contrary, low-mass star-forming systems are extremely rare in the inner regions of the Virgo cluster A, where the density of the intergalactic medium is at its maximum. Our ram pressure stripping models consistently indicate that these star-forming systems can be rapidly deprived of their interstellar medium during their interaction with the intergalactic medium. The lack of gas quenches their star formation activity transforming them into quiescent dwarf ellipticals. This mild transformation does not perturb the kinematic properties of these galaxies which still have rotation curves typical of star-forming systems.
    Astronomy and Astrophysics 07/2014; 570. DOI:10.1051/0004-6361/201424419 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the advent of the next generation wide-field cameras it became possible to survey in an unbiased mode galaxies spanning a variety of local densities, from the core of rich clusters, to compact and loose groups, down to filaments and voids. The sensitivity reached by these instruments allowed to extend the observation to dwarf galaxies, the most "fragile" objects in the universe. At the same time models and simulations have been tailored to quantify the different effects of the environment on the evolution of galaxies. Simulations, models, and observations consistently indicate that star-forming dwarf galaxies entering high-density environments for the first time can be rapidly stripped from their interstellar medium. The lack of gas quenches the activity of star formation, producing on timescales of ${\sim}$1~Gyr quiescent galaxies with spectro-photometric, chemical, structural, and kinematical properties similar to those observed in dwarf early-type galaxies inhabiting rich clusters and loose groups. Simulations and observations consistently identify ram pressure stripping as the major effect responsible for the quenching of the star-formation activity in rich clusters. Gravitational interactions (galaxy harassment) can also be important in groups or in clusters whenever galaxies have been members since early epochs. The observation of clusters at different redshifts combined with the present high infalling rate of galaxies onto clusters indicate that the quenching of the star-formation activity in dwarf systems and the formation of the faint end of the red sequence is a very recent phenomenon.
    Astronomy and Astrophysics Review 11/2014; 22(1). DOI:10.1007/s00159-014-0074-y · 13.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central Galaxies (CGs) in massive halos live in unique environments with formation histories closely linked to that of the host halo. In local clusters they have larger sizes ($R_e$) and lower velocity dispersions (sigma) at fixed stellar mass M_star, and much larger R_e at a fixed $\sigma$ than field and satellite galaxies (non-CGs). Using spectroscopic observations of group galaxies selected from the COSMOS survey, we compare the dynamical scaling relations of early-type CGs and non-CGs at z~0.6, to distinguish possible mechanisms that produce the required evolution. CGs are systematically offset towards larger R_e at fixed $\sigma$ compared to non-CGs with similar M_star. The CG R_e-M_star relation also shows differences, primarily driven by a sub-population (~15%) of galaxies with large $R_e$, while the M_star-sigma relations are indistinguishable. These results are accentuated when double Sersic profiles, which better fit light in the outer regions of galaxies, are adopted. They suggest that even group-scale CGs can develop extended components by these redshifts that can increase total $R_e$ and M_star estimates by factors of ~2. To probe the evolutionary link between our sample and cluster CGs, we also analyze two cluster samples at z~0.6 and z~0. We find similar results for the more massive halos at comparable z, but much more distinct CG scaling relations at low-z. Thus, the rapid, late-time accretion of outer components, perhaps via the stripping and accretion of satellites, would appear to be a key feature that distinguishes the evolutionary history of CGs.
    The Astrophysical Journal 10/2014; 797(1). DOI:10.1088/0004-637X/797/1/62 · 6.28 Impact Factor