The Palomar-Quest Digital Synoptic Sky Survey

Astronomische Nachrichten (Impact Factor: 0.92). 03/2008; 329(3):263 - 265. DOI: 10.1002/asna.200710948
Source: arXiv

ABSTRACT We describe briefly the Palomar-Quest (PQ) digital synoptic sky survey, including its parameters, data processing, status, and plans. Exploration of the time domain is now the central scientific and technological focus of the survey. To this end, we have developed a real-time pipeline for detection of transient sources.We describe some of the early results, and lessons learned which may be useful for other, similar projects, and time-domain astronomy in general. Finally, we discuss some issues and challenges posed by the real-time analysis and scientific exploitation of massive data streams from modern synoptic sky surveys. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Download full-text


Available from: Andrew John Drake, Sep 26, 2015
17 Reads
  • Source
    • "Automated classification of candidate events, separating real astronomical sources from a variety of spurious candidates (instrument artifacts) is operational within the Palomar‐Quest) survey's real time data pipeline [26] [31] "
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the development of a system for an automated, iterative, real-time classification of transient events discovered in synoptic sky surveys. The system under development incorporates a number of Machine Learning techniques, mostly using Bayesian approaches, due to the sparse nature, heterogeneity, and variable incompleteness of the available data. The classifications are improved iteratively as the new measurements are obtained. One novel feature is the development of an automated follow-up recommendation engine, that suggest those measurements that would be the most advantageous in terms of resolving classification ambiguities and/or characterization of the astrophysically most interesting objects, given a set of available follow-up assets and their cost functions. This illustrates the symbiotic relationship of astronomy and applied computer science through the emerging discipline of AstroInformatics.
    Proceedings of the 2011 Conference on Intelligent Data Understanding, CIDU 2011, October 19-21, 2011, Mountain View, California, USA; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A program that we call the QUEST Data Processing Software Pipeline has been written to process the large volumes of data produced by the QUEST camera on the Samuel Oschin Schmidt Telescope at the Palomar Observatory. The program carries out both aperture and PSF photometry, combines data from different repeated observations of the same portion of sky, and produces a Master Object Catalog. A rough calibration of the data is carried out. This program, as well as the calibration procedures and quality checks on the output are described. Comment: 17 pages, 1 table, 8 figures
    Publications of the Astronomical Society of the Pacific 03/2007; 120(868). DOI:10.1086/588828 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We conducted an exploratory search for quasars at z ~ 6-8, using the Early Data Release (EDR) from the United Kingdom Infrared Deep Sky Survey (UKIDSS) cross-matched to panoramic optical imagery. High-redshift quasar candidates are chosen using multi-color selection in i, z, Y, J, H, and K bands. After removal of apparent instrumental artifacts, our candidate list consisted of 34 objects. We further refined this list with deeper imaging in the optical for ten of our candidates. Twenty-five candidates were followed up spectroscopically in the near-infrared and in the optical. We confirmed 25 of our spectra as very low-mass main-sequence stars or brown dwarfs, which were indeed expected as the main contaminants of this exploratory search. The lack of quasar detection is not surprising: the estimated probability of finding a single z > 6 quasar down to the limit of UKIDSS in 27.3 deg2 of the EDR is <5%. We find that the most important limiting factor in this work is the depth of the available optical data. Experience gained in this pilot project can help refine high-redshift quasar selection criteria for subsequent UKIDSS data releases.
    The Astronomical Journal 07/2008; 136(3):954. DOI:10.1088/0004-6256/136/3/954 · 4.02 Impact Factor
Show more