Temporal evolution of coherence and power in the human sleep electroencephalogram

Institute of Pharmacology, University of Zürich, Zürich, Switzerland
Journal of Sleep Research (Impact Factor: 3.04). 05/1998; 7(S1):36 - 41. DOI:10.1046/j.1365-2869.7.s1.6.x
Source: PubMed

ABSTRACT Coherence analysis of the human sleep electroencephalogram (EEG) was used to investigate relations between brain regions. In all-night EEG recordings from eight young subjects, the temporal evolution of power and coherence spectra within and between cerebral hemispheres was investigated from bipolar derivations along the antero-posterior axis. Distinct peaks in the power and coherence spectra were present in NREM sleep but not in REM sleep. They were situated in the frequency range of sleep spindles (13–14 Hz), alpha band (9–10 Hz) and low delta band (1–2 Hz). Whereas the peaks coincided in the power and coherence spectra, a dissociation of their temporal evolution was observed. In the low delta band, only power but not coherence showed a decline across successive NREM sleep episodes. Moreover, power increased gradually in the first part of a NREM sleep episode, whereas coherence showed a rapid rise. The results indicate that the intrahemispheric and interhemispheric coherence of EEG activity attains readily a high level in NREM sleep and is largely independent of the signal amplitude.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Sleep is known to support memory consolidation. Here we review evidence for an active system consolidation occurring during sleep. At the beginning of this process is sleep's ability to preserve episodic experiences preferentially encoded in hippocampal networks. Repeated neuronal reactivation of these representations during slow-wave sleep transforms episodic representations into long-term memories, redistributes them toward extrahippocampal networks, and qualitatively changes them to decontextualized schema-like representations. Electroencephalographic (EEG) oscillations regulate the underlying communication: Hippocampal sharp-wave ripples coalescing with thalamic spindles mediate the bottom-up transfer of reactivated memory information to extrahippocampal regions. Neocortical slow oscillations exert a supraordinate top-down control to synchronize hippocampal reactivations of specific memories to their excitable up-phase, thus allowing plastic changes in extrahippocampal regions. We propose that reactivations during sleep are a general mechanism underlying the abstraction of temporally stable invariants from a flow of input that is solely structured in time, thus representing a basic mechanism of memory formation. Expected final online publication date for the Annual Review of Neuroscience Volume 36 is July 08, 2013. Please see for revised estimates.
    Annual Review of Neuroscience 04/2013; · 20.61 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Sleep has beneficial effects on brain function and learning, which are reflected in plastic changes in the cortex. Early childhood is a time of rapid maturation in fundamental skills-e.g., language, cognitive control, working memory-that are predictive of future functioning. Little is currently known about the interactions between sleep and brain maturation during this developmental period. We propose coherent electroencephalogram (EEG) activity during sleep may provide unique insight into maturational processes of functional brain connectivity. Longitudinal sleep EEG assessments were performed in eight healthy subjects at ages 2, 3 and 5 years. Sleep EEG coherence increased across development in a region- and frequency-specific manner. Moreover, although connectivity primarily decreased intra-hemispherically across a night of sleep, an inter-hemispheric overnight increase occurred in the frequency range of slow waves (0.8-2 Hz), theta (4.8-7.8 Hz) and sleep spindles (10-14 Hz), with connectivity changes of up to 20% across a night of sleep. These findings indicate sleep EEG coherence reflects processes of brain maturation-i.e., programmed unfolding of neuronal networks-and moreover, sleep-related alterations of brain connectivity during the sensitive maturational window of early childhood.
    Brain sciences. 11/2013; 3(4):1445-1460.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: One challenging aspect of the clinical assessment of brain-injured, unresponsive patients is the lack of an objective measure of consciousness that is independent of the subject's ability to interact with the external environment. Theoretical considerations suggest that consciousness depends on the brain's ability to support complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). We introduce and test a theory-driven index of the level of consciousness called the perturbational complexity index (PCI). PCI is calculated by (i) perturbing the cortex with transcranial magnetic stimulation (TMS) to engage distributed interactions in the brain (integration) and (ii) compressing the spatiotemporal pattern of these electrocortical responses to measure their algorithmic complexity (information). We test PCI on a large data set of TMS-evoked potentials recorded in healthy subjects during wakefulness, dreaming, nonrapid eye movement sleep, and different levels of sedation induced by anesthetic agents (midazolam, xenon, and propofol), as well as in patients who had emerged from coma (vegetative state, minimally conscious state, and locked-in syndrome). PCI reliably discriminated the level of consciousness in single individuals during wakefulness, sleep, and anesthesia, as well as in patients who had emerged from coma and recovered a minimal level of consciousness. PCI can potentially be used for objective determination of the level of consciousness at the bedside.
    Science translational medicine 08/2013; 5(198):198ra105. · 10.76 Impact Factor


Available from

Peter Achermann