The SCUBA HAlf Degree Extragalactic Survey – VI. 350‐μm mapping of submillimetre galaxies

UK ATC, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ
Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 03/2008; 384(4):1597 - 1610. DOI: 10.1111/j.1365-2966.2007.12808.x
Source: OAI

ABSTRACT ABSTRACTA follow-up survey using the Submillimetre High-Angular Resolution Camera (SHARC-II) at 350 μm has been carried out to map the regions around several 850-μm-selected sources from the Submillimetre HAlf Degree Extragalactic Survey (SHADES). These observations probe the infrared (IR) luminosities and hence star formation rates in the largest existing, most robust sample of submillimetre galaxies (SMGs). We measure 350-μm flux densities for 24 850-μm sources, seven of which are detected at ≥2.5σ within a 10 arcsec search radius of the 850-μm positions. When results from the literature are included the total number of 350-μm flux density constraints of SHADES SMGs is 31, with 15 detections. We fit a modified blackbody to the far-IR (FIR) photometry of each SMG, and confirm that typical SMGs are dust-rich (Mdust≃ 9 × 108 M⊙), luminous (LFIR≃ 2 × 1012 L⊙) star-forming galaxies with intrinsic dust temperatures of ≃35 K and star formation rates of ≃400 M⊙ yr−1. We have measured the temperature distribution of SMGs and find that the underlying distribution is slightly broader than implied by the error bars, and that most SMGs are at 28 K with a few hotter. We also place new constraints on the 350-μm source counts, N350(>25 mJy) ∼ 200–500 deg−2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] Aims: This work focuses on one lensed system, HATLAS J142935.3-002836 (H1429-0028), selected in the Herschel-ATLAS field. Gathering a rich, multi-wavelength dataset, we aim to confirm the lensing hypothesis and model the background source's morphology and dynamics, as well as to provide a full physical characterisation. Methods: Multi-wavelength high-resolution data is utilised to assess the nature of the system. A lensing-analysis algorithm which simultaneously fits different wavebands is adopted to characterise the lens. The background galaxy dynamical information is studied by reconstructing the 3-D source-plane of the ALMA CO(J:4-3) transition. Near-IR imaging from HST and Keck-AO allows to constrain rest-frame optical photometry independently for the foreground and background systems. Physical parameters (such as stellar and dust masses) are estimated via modelling of the spectral energy distribution taking into account source blending, foreground obscuration, and differential magnification. Results: The system comprises a foreground edge-on disk galaxy (at z_sp=0.218) with an almost complete Einstein ring around it. The background source (at z_sp=1.027) is magnified by a factor of ~8-10 depending on wavelength. It is comprised of two components and a tens of kpc long tidal tail resembling the Antennae merger. As a whole, the system is a massive stellar system (1.32[-0.41,+0.63] x1E11 Mo) forming stars at a rate of 394+-90 Mo/yr, and has a significant gas reservoir M_ISM = 4.6+-1.7 x1E10 Mo. Its depletion time due to star formation alone is thus expected to be tau_SF=M_ISM/SFR=117+-51 Myr. The dynamical mass of one of the components is estimated to be 5.8+-1.7 x1E10 Mo, and, together with the photometric total mass estimate, it implies that H1429-0028 is a major merger system (1:2.8[-1.5,+1.8]).
  • [Show abstract] [Hide abstract]
    ABSTRACT: WISE has discovered an extraordinary population of hyper-luminous dusty galaxies which are faint in the two bluer passbands ($3.4\, \mu$m and $4.6\, \mu$m) but are bright in the two redder passbands of WISE ($12\, \mu$m and $22\, \mu$m). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the CARMA and SMA interferometer arrays at submm/mm wavelengths. We report continuum detections at $\sim$ 1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1-2 arcsec and are consistent with single point sources. We estimate the masses of cold dust are 2.0$\times 10^{8} M_{\odot}$ for W0149+2350 and 3.9$\times 10^{8} M_{\odot}$ for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2$\sigma$ upper limits to the molecular gas masses traced by CO, which are 3.4$\times 10^{10} M_{\odot}$ and 2.1$\times 10^{10} M_{\odot}$ for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.
    The Astrophysical Journal 04/2014; 793(1). DOI:10.1088/0004-637X/793/1/8 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the most complete study to date of the X-ray emission from star-formation in high redshift (median z=0.7; z<1.5), IR-luminous (L_IR=10^10-10^13 L_sun) galaxies detected by Herschel's PACS and SPIRE instruments. For our purpose we take advantage of the deepest X-ray data to date, the Chandra deep fields (North and South). Sources which host AGN are removed from our analysis by means of multiple AGN indicators. We find an AGN fraction of 18+/-2 per cent amongst our sample and note that AGN entirely dominate at values of log[L_X/L_IR]>-3 in both hard and soft X-ray bands. From the sources which are star-formation dominated, only a small fraction are individually X-ray detected and for the bulk of the sample we calculate average X-ray luminosities through stacking. We find an average soft X-ray to infrared ratio of log[L_SX/L_IR]=-4.3 and an average hard X-ray to infrared ratio of log[L_HX/L_IR]=-3.8. We report that the X-ray/IR correlation is approximately linear through the entire range of L_IR and z probed and, although broadly consistent with the local (z<0.1) one, it does display some discrepancies. We suggest that these discrepancies are unlikely to be physical, i.e. due to an intrinsic change in the X-ray properties of star-forming galaxies with cosmic time, as there is no significant evidence for evolution of the L_X/L_IR ratio with redshift. Instead they are possibly due to selection effects and remaining AGN contamination. We also examine whether dust obscuration in the galaxy plays a role in attenuating X-rays from star-formation, by investigating changes in the L_X/L_IR ratio as a function of the average dust temperature. We conclude that X-rays do not suffer any measurable attenuation in the host galaxy.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4). DOI:10.1093/mnras/stu1441 · 5.23 Impact Factor

Full-text (4 Sources)

Available from
May 31, 2014