Article

THE RELATIONSHIP BETWEEN THE METABOLISM OF RIBAVIRIN AND ITS PROPOSED MECHANISM OF ACTION

Nucleic Acid Research Institute ICN Pharmaceuticals, Inc. Irvine, California 92714
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 12/2006; 284(1):211 - 229. DOI: 10.1111/j.1749-6632.1977.tb21953.x

ABSTRACT Not Available Bibtex entry for this abstract Preferred format for this abstract (see Preferences) Find Similar Abstracts: Use: Authors Title Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints

0 Bookmarks
 · 
34 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infections are treated with interferon alpha plus ribavirin, but it is unknown how ribavirin works against HCV. Ribavirin is a guanosine analogue that can be a substrate for the viral RNA polymerase. HCV is genetically variable, and this genetic variation could affect the polymerase's use of ribavirin triphosphate. Thirteen patients infected with HCV who failed interferon alpha monotherapy and were retreated with interferon alpha plus ribavirin were identified; seven were responders and six were nonresponders to combination therapy. The consensus sequences encoding the 13 polymerases plus seven sequences from treatment-naive controls were determined. The responder sequences were more genetically variable than the nonresponders and controls, the amino acid variations unique to responders had lower BLOSUM90 scores than variations in nonresponders and controls, and the amino acid variations correlated with response to therapy clustered around the RNA-binding channel of the polymerase. These data imply that that the responder enzymes were probably more functionally variable than the nonresponder enzymes. Enzymatic activity was measured for 10 recombinant polymerases; RNA synthesis activity varied by over sevenfold and polymerases from two of the responders used GTP much better than UTP, but technical limitations prevented direct measurement of ribavirin triphosphate use. Because response to combination therapy in these patients was primarily due to addition of ribavirin to the treatment regimen, these data imply that genetic variation in the polymerase may have affected the efficiency of ribavirin incorporation into the viral genome and hence may have modulated ribavirin's efficacy against HCV.
    Journal of Viral Hepatitis 03/2009; 16(8):595-604. · 3.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA viruses exhibit increased mutation frequencies relative to other organisms. Recent work has attempted to exploit this unique feature by increasing the viral mutation frequency beyond an extinction threshold, an antiviral strategy known as lethal mutagenesis. A number of novel nucleoside analogs have been designed around this premise. Herein, we review the quasispecies nature of RNA viruses and survey the antiviral, biological and biochemical characteristics of mutagenic nucleoside analogs, including clinically-used ribavirin. Biological implications of modulating viral replication fidelity are discussed in the context of translating lethal mutagenesis into a clinically-useful antiviral strategy.
    Future Virology 12/2008; 3(6):553-566. · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis C virus (HCV) RNA polymerase (RdRp) may be a target of the drug ribavirin, and it is an object of drug development. Independent isolates of any HCV subtype differ genetically by approximately 10%, but the effects of this variation on enzymatic activity and drug sensitivity are poorly understood. We proposed that nucleotide use profiles (G/U ratio) among subtype 1b RdRps may reflect their use of ribavirin. Here, we characterized how subtype 1b genetic variation affects RNA polymerase activity and evaluated the G/U ratio as a surrogate for ribavirin use during pegylated interferon α and ribavirin therapy. Genetic and biochemical variation in the RdRp was compared between responders who would be largely sensitive to ribavirin and relapsers who would be mostly resistant. There were no consistent genetic differences between responder and relapser RdRps. RNA polymerization, RNA binding and primer usage varied widely among the RdRps, but these parameters did not differ significantly between the response groups. The G/U ratio among a set of subtype 1a RdRps increased rather than decreased following failed therapy, as would be expected if it reflected ribavirin use. Finally, RdRp activity was significantly associated with ALT levels. These data indicate that (i) current genetic approaches cannot predict RNA polymerase behaviour, (ii) the G/U ratio is not a surrogate for ribavirin use, (iii) RdRp activity may contribute to liver disease by modulating viral mRNA and antigen levels, and (iv) drug candidates should be tested against multiple patient-derived enzymes to ensure widespread efficacy even within a viral subtype.
    Journal of Viral Hepatitis 05/2011; 18(5):349-57. · 3.08 Impact Factor