Article

Synthesis and degradation of lac mRNA in E. coli depleted of 30S ribosomal subunits.

Technion-Israel Institute of Technology
MGG - Molecular and General Genetics 07/1979; 173(2):135-44. DOI: 10.1007/BF00330303
Source: PubMed

ABSTRACT Escherichia coli was depleted of active ribosomes by a thermal shock at 47 degrees C which quantitatively destroyed the 30S ribosomal subunits. During recovery, RNA is synthesized while protein synthesis resumes only after about 90 minutes. It is shown that lac mRNA is synthesized in the complete absence of ribosomal activity and hence RNA synthesis is not coupled to protein synthesis. Transcription time and average transcript length were slightly less than in untreated cells. lac mRNA was degraded much more slowly in bacteria depleted of ribosomes. In E. coli W both functional half life (T 1/2 = 28 min vs. 2.25 in untreated cells) and chemical stability. The analysis of rna and pnp mutants showed that polynucleotide phosphorylase is involved in lac mRNA degradation in heat treated cells but that RNase I is not. The functional T 1/2 was increased in pnp mutants and was 95 min during the recovery period. The rate of chemical decay is so slow that the half-life cannot be accurately determined.

0 Bookmarks
 · 
33 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Much of the information available about factors that affect mRNA decay in Escherichia coli, and by inference in other bacteria, has been gleaned from study of less than 25 of the approximately 4,300 predicted E. coli messages. To investigate these factors more broadly, we examined the half-lives and steady-state abundance of known and predicted E. coli mRNAs at single-gene resolution by using two-color fluorescent DNA microarrays. An rRNA-based strategy for normalization of microarray data was developed to permit quantitation of mRNA decay after transcriptional arrest by rifampicin. We found that globally, mRNA half-lives were similar in nutrient-rich media and defined media in which the generation time was approximately tripled. A wide range of stabilities was observed for individual mRNAs of E. coli, although approximately 80% of all mRNAs had half-lives between 3 and 8 min. Genes having biologically related metabolic functions were commonly observed to have similar stabilities. Whereas the half-lives of a limited number of mRNAs correlated positively with their abundance, we found that overall, increased mRNA stability is not predictive of increased abundance. Neither the density of putative sites of cleavage by RNase E, which is believed to initiate mRNA decay in E. coli, nor the free energy of folding of 5' or 3' untranslated region sequences was predictive of mRNA half-life. Our results identify previously unsuspected features of mRNA decay at a global level and also indicate that generalizations about decay derived from the study of individual gene transcripts may have limited applicability.
    Proceedings of the National Academy of Sciences 08/2002; 99(15):9697-702. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-transcriptional mechanisms operate in regulation of gene expression in bacteria, the amount of a given gene product being also dependent on the inactivation rate of its own message. Moreover, segmental differences in mRNA stability of polycistronic transcripts may be responsible for differential expression of genes clustered in operons. Given the absence of 5' to 3' exoribonucleolytic activities in prokaryotes, both endoribonucleases and 3' to 5' exoribonucleases are involved in chemical decay of mRNA. As the 3' to 5' exoribonucleolytic activities are readily blocked by stem-loop structures which are usual at the 3' ends of bacterial messages, the rate of decay is primarily determined by the rate of the first endonucleolytic cleavage within the transcripts, after which the resulting mRNA intermediates are degraded by the 3' to 5' exoribonucleases. Consequently, the stability of a given transcript is determined by the accessibility of suitable target sites to endonucleolytic activities. A considerable number of bacterial messages decay with a net 5' to 3' directionality. Two different alternative models have been proposed to explain such a finding, the first invoking the presence of functional coupling between degradation and the movement of the ribosomes along the transcripts, the second one implying the existence of a 5' to 3' processive '5' binding nuclease'. The different systems by which these two current models of mRNA decay have been tested will be presented with particular emphasis on polycistronic transcripts.
    Genetica 02/1994; 94(2-3):157-72. · 1.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-transcriptional mechanisms operate in regulation of gene expression in bacteria, the amount of a given gene product being also dependent on the inactivation rate of its own message. Moreover, segmental differences in mRNA stability of polycistronic transcripts may be responsible for differential expression of genes clustered in operons. Given the absence of 5 to 3 exoribonucleolytic activities in prokaryotes, both endoribonucleases and 3 to 5 exoribonucleases are involved in chemical decay of mRNA. As the 3 to 5 exoribonucleolytic activities are readily blocked by stem-loop structures which are usual at the 3 ends of bacterial messages, the rate of decay is primarily determined by the rate of the first endonucleolytic cleavage within the transcripts, after which the resulting mRNA intermediates are degraded by the 3 to 5 exoribonucleases. Consequently, the stability of a given transcript is determined by the accessibility of suitable target sites to endonucleolytic activities. A considerable number of bacterial messages decay with a net 5 to 3 directionality. Two different alternative models have been proposed to explain such a finding, the first invoking the presence of functional coupling between degradation and the movement of the ribosomes along the transcripts, the second one implying the existence of a 5 to 3 processive 5 binding nuclease. The different systems by which these two current models of mRNA decay have been tested will be presented with particular emphasis on polycistronic transcripts.
    Genetica 01/1994; 94(2):157-172. · 1.68 Impact Factor