Article

Clinical Spectrum of Kufor-Rakeb Syndrome in the Chilean Kindred with ATP13A2 Mutations

Centro de Estudios del Movimiento, Santiago, Chile
Movement Disorders (Impact Factor: 5.63). 09/2010; 25(12):1929 - 1937. DOI: 10.1002/mds.22996
Source: PubMed

ABSTRACT We report the clinical features of the original Chilean family with Kufor-Rakeb syndrome (KRS) that led to the discovery of the ATP13A2 gene at the PARK9 locus. KRS is a rare juvenile-onset autosomal recessive disease characterized by progressive Parkinsonism, pyramidal signs, and cognitive decline in addition to vertical gaze palsy and facial-faucial-finger minimyoclonus. Neurological and neuropsychological examination during a 10-year period, videotaping, neuroimaging, and measurement of DNA methylation of the ATP13A2 promoter region were performed. The youngest 5 of 17 children of nonconsanguineous parents, carrying compound-heterozygous ATP13A2 mutations, had normal development until ages ∼10 to 12 years, when school performance deteriorated and slowness, rigidity, and frequent falls developed. Examination revealed bradykinesia, subtle postural/action tremor, cogwheel rigidity, spasticity, upward gaze palsy, smooth pursuit with saccadic intrusions, and dementia. Additional signs included facial-faucial-finger minimyoclonus, absent postural reflexes, visual/auditory hallucinations, and insomnia. Levodopa response could not be fully judged in this family. T2* magnetic resonance imaging sequences revealed marked diffuse hypointensity of the caudate (head and body) and lenticular nucleus bilaterally. Disease progression was slow including epilepsy, cachexia, and anarthria. Four affected members died after 28.5 ± 5.5 (mean ± SD) years of disease. Two heterozygous carriers, the mother and eldest sibling, showed jerky perioral muscle contractions and clumsiness of hand movements. There was no significant correlation between DNA methylation of the ATP13A2 promoter region and disease progression. The marked caudate and lenticular nucleus T2*-hypointensity suggests that KRS might belong to the family of neurodegenerative diseases associated with brain iron accumulation. © 2010 Movement Disorder Society.

1 Follower
 · 
165 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manganese (Mn) is an essential trace metal that is pivotal for normal cell function and metabolism. Its homeostasis is tightly regulated; however, the mechanisms of Mn homeostasis are poorly characterized. While a number of proteins such as the divalent metal transporter 1, the transferrin/transferrin receptor complex, the ZIP family metal transporters ZIP-8 and ZIP-14, the secretory pathway calcium ATPases SPCA1 and SPCA2, ATP13A2, and ferroportin have been suggested to play a role in Mn transport, the degree that each of them contributes to Mn homeostasis has still to be determined. The recent discovery of SLC30A10 as a crucial Mn transporter in humans has shed further light on our understanding of Mn transport across the cell. Although essential, Mn is toxic at high concentrations. Mn neurotoxicity has been attributed to impaired dopaminergic (DAergic), glutamatergic and GABAergic transmission, mitochondrial dysfunction, oxidative stress, and neuroinflammation. As a result of preferential accumulation of Mn in the DAergic cells of the basal ganglia, particularly the globus pallidus, Mn toxicity causes extrapyramidal motor dysfunction. Firstly described as "manganism" in miners during the nineteenth century, this movement disorder resembles Parkinson's disease characterized by hypokinesia and postural instability. To date, a variety of acquired causes of brain Mn accumulation can be distinguished from an autosomal recessively inherited disorder of Mn metabolism caused by mutations in the SLC30A10 gene. Both, acquired and inherited hypermanganesemia, lead to Mn deposition in the basal ganglia associated with pathognomonic magnetic resonance imaging appearances of hyperintense basal ganglia on T1-weighted images. Current treatment strategies for Mn toxicity combine chelation therapy to reduce the body Mn load and iron (Fe) supplementation to reduce Mn binding to proteins that interact with both Mn and Fe. This chapter summarizes our current understanding of Mn homeostasis and the mechanisms of Mn toxicity and highlights the clinical disorders associated with Mn neurotoxicity.
    International Review of Neurobiology 01/2013; 110C:277-312. DOI:10.1016/B978-0-12-410502-7.00013-2 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and loci related to PD. Autosomal recessive mutations in the genes Parkin, Pink1, DJ-1, ATP13A2, PLA2G6, and FBXO7 have been linked to PD susceptibility. Such mutations in ATP13A2, also named PARK9, were first identified in 2006 in a Chilean family and are associated with a juvenile-onset, levodopa-responsive type of Parkinsonism called Kufor-Rakeb syndrome (KRS). KRS involves pyramidal degeneration, supranuclear palsy, and cognitive impairment. Here we review current knowledge about the ATP13A2 gene, clinical characteristics of patients with PD-associated ATP13A2 mutations, and models of how the ATP13A2 protein may help prevent neurodegeneration by inhibiting α-synuclein aggregation and supporting normal lysosomal and mitochondrial function. We also discuss another ATP13A2 mutation that is associated with the family of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs), and we propose a single pathway whereby ATP13A2 mutations may contribute to NCLs and Parkinsonism. Finally, we highlight how studies of mutations in this gene may provide new insights into PD pathogenesis and identify potential therapeutic targets.
    BioMed Research International 08/2014; 2014:371256. DOI:10.1155/2014/371256 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Syndromes of neurodegeneration with brain iron accumulation (NBIA) are characterized by increased iron deposition in the basal ganglia leading to complex progressive neurological symptoms. Several genetically distinct subforms have been recognized. In addition to pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), further genetic causes continue to be identified. Most of these present in childhood and are inherited following an autosomal recessive trait. However, the clinical and pathological spectrum has broadened and new age-dependent presentations have been described and there is overlap between the different NBIA disorders and with other diseases (such as spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis). Thus, additional clinical information (e.g., radiological findings such as precise patters of deposition of iron or co-occurrence of white matter lesions) may be useful when prioritizing genetic screening. Neuropathological work-up demonstrated variable involvement of iron deposition, but also Lewy bodies, neurofibrillary tangles and spheroid bodies. Treatment remains symptomatic. Here we review characteristic features of NBIA syndromes with a focus on pediatric cases.
    Current Treatment Options in Neurology 07/2013; DOI:10.1007/s11940-013-0254-5 · 2.18 Impact Factor

Full-text (2 Sources)

Download
103 Downloads
Available from
May 31, 2014