Clinical Spectrum of Kufor-Rakeb Syndrome in the Chilean Kindred with ATP13A2 Mutations

Centro de Estudios del Movimiento, Santiago, Chile
Movement Disorders (Impact Factor: 5.68). 09/2010; 25(12):1929 - 1937. DOI: 10.1002/mds.22996
Source: PubMed


We report the clinical features of the original Chilean family with Kufor-Rakeb syndrome (KRS) that led to the discovery of the ATP13A2 gene at the PARK9 locus. KRS is a rare juvenile-onset autosomal recessive disease characterized by progressive Parkinsonism, pyramidal signs, and cognitive decline in addition to vertical gaze palsy and facial-faucial-finger minimyoclonus. Neurological and neuropsychological examination during a 10-year period, videotaping, neuroimaging, and measurement of DNA methylation of the ATP13A2 promoter region were performed. The youngest 5 of 17 children of nonconsanguineous parents, carrying compound-heterozygous ATP13A2 mutations, had normal development until ages ∼10 to 12 years, when school performance deteriorated and slowness, rigidity, and frequent falls developed. Examination revealed bradykinesia, subtle postural/action tremor, cogwheel rigidity, spasticity, upward gaze palsy, smooth pursuit with saccadic intrusions, and dementia. Additional signs included facial-faucial-finger minimyoclonus, absent postural reflexes, visual/auditory hallucinations, and insomnia. Levodopa response could not be fully judged in this family. T2* magnetic resonance imaging sequences revealed marked diffuse hypointensity of the caudate (head and body) and lenticular nucleus bilaterally. Disease progression was slow including epilepsy, cachexia, and anarthria. Four affected members died after 28.5 ± 5.5 (mean ± SD) years of disease. Two heterozygous carriers, the mother and eldest sibling, showed jerky perioral muscle contractions and clumsiness of hand movements. There was no significant correlation between DNA methylation of the ATP13A2 promoter region and disease progression. The marked caudate and lenticular nucleus T2*-hypointensity suggests that KRS might belong to the family of neurodegenerative diseases associated with brain iron accumulation. © 2010 Movement Disorder Society.

Download full-text


Available from: Norbert Brüggemann,
  • Source
    • "In the end, the clinicians attributed the abnormal MRI hypointensity to iron deposition. The clinicians attending the Chilean patient also attributed the hypointensity to ferritin deposits based on the absence of hypointensity on brain CT images, though they did not perform tests to exclude the possibility of deposition of other metals [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and loci related to PD. Autosomal recessive mutations in the genes Parkin, Pink1, DJ-1, ATP13A2, PLA2G6, and FBXO7 have been linked to PD susceptibility. Such mutations in ATP13A2, also named PARK9, were first identified in 2006 in a Chilean family and are associated with a juvenile-onset, levodopa-responsive type of Parkinsonism called Kufor-Rakeb syndrome (KRS). KRS involves pyramidal degeneration, supranuclear palsy, and cognitive impairment. Here we review current knowledge about the ATP13A2 gene, clinical characteristics of patients with PD-associated ATP13A2 mutations, and models of how the ATP13A2 protein may help prevent neurodegeneration by inhibiting α-synuclein aggregation and supporting normal lysosomal and mitochondrial function. We also discuss another ATP13A2 mutation that is associated with the family of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs), and we propose a single pathway whereby ATP13A2 mutations may contribute to NCLs and Parkinsonism. Finally, we highlight how studies of mutations in this gene may provide new insights into PD pathogenesis and identify potential therapeutic targets.
    BioMed Research International 08/2014; 2014:371256. DOI:10.1155/2014/371256 · 1.58 Impact Factor
  • Source
    • "Recently, ATP13A2 was associated with Parkinson's disease (PD), since it was found mutated in several early onset PD cases (Ramirez et al., 2006; Di Fonzo et al., 2007; Ning et al., 2008; Djarmati et al., 2009; Behrens et al., 2010; Crosiers et al., 2011; Santoro et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP13A2 is a lysosome-specific transmembrane ATPase protein of unknown function. This protein was initially linked to Kufor-Rakeb syndrome where it is absent or mutated. More recently, point mutations in ATP13A2 were linked to familial cases of Parkinson's disease. Zebrafish is commonly used as a vertebrate model for the study of different neurodegenerative diseases and has homologues of several Parkinson's Disease associated proteins. Here, we describe for the first time the zebrafish homologue of human ATP13A2, demonstrating the homology between the protein sequences, which supports a conserved biological role. Furthermore, the spatial pattern of protein expression was studied and the lethality of the knockdown of ATP13A2 suggests it plays a crucial role during embryonic development. Our findings bring new insight into the biology of ATP13A2 and open novel opportunities for its study using zebrafish as a model organism.
    Brain research bulletin 10/2012; 90(1). DOI:10.1016/j.brainresbull.2012.09.017 · 2.72 Impact Factor
  • Source
    • "Mutations in the ATP13A2 gene cause Kufor-Rakeb syndrome (KRS), a juvenile-onset pallido-pyramidal neurodegenerative disorder characterized by slowly progressive levodopa-responsive parkinsonism often with additional features including supranuclear gaze palsy, pyramidal dysfunction, dystonia and dementia [4], [5], [6]. KRS subjects normally exhibit generalized brain atrophy with evidence of impaired nigrostriatal dopaminergic function [7], [8], [9], [10]. Homozygous or compound heterozygous mutations have been identified in KRS subjects of families from Jordan, Chile, Afghanistan, Pakistan and China that produce frameshift or splicing variants resulting in truncated forms of ATP13A2 protein that are predicted to lead to a loss-of-function [5], [8], [11], [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.
    PLoS ONE 06/2012; 7(6):e39942. DOI:10.1371/journal.pone.0039942 · 3.23 Impact Factor
Show more