Tidal evolution of discy dwarf galaxies in the Milky Way potential: the formation of dwarf spheroidals

GEPI (UMR 8111: CNRS and Université Denis Diderot), Observatoire de Paris, F-92195 Meudon, France
Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 08/2009; 397(4):2015 - 2029. DOI: 10.1111/j.1365-2966.2009.15046.x

ABSTRACT We conduct high-resolution collisionless N-body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, Vmax, and they are both good tracers of the bound mass. Specifically, we find that Mbound∝V3.5max and in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The classical dwarf spheroidals (dSphs) provide a critical test for Modified Newtonian Dynamics (MOND) because they are observable satellite galactic systems with low internal accelerations and low, but periodically varying, external acceleration. This varying external gravitational field is not commonly found acting on systems with low internal acceleration. Using Jeans modelling, Carina in particular has been demonstrated to require a V-band mass-to-light ratio greater than 5, which is the nominal upper limit for an ancient stellar population. We run MOND N-body simulations of a Carina-like dSph orbiting the Milky Way to test if dSphs in MOND are stable to tidal forces over the Hubble time and if those same tidal forces artificially inflate their velocity dispersions and therefore their apparent mass-to-light ratio. We run many simulations with various initial total masses for Carina, and Galactocentric orbits (consistent with proper motions), and compare the simulation line of sight velocity dispersions (losVDs) with the observed losVDs of Walker et al. (2007). We find that the dSphs are stable, but that the tidal forces are not conducive to artificially inflating the losVDs. Furthermore, the range of mass-to-light ratios that best reproduces the observed line of sight velocity dispersions of Carina is 5.3 to 5.7 and circular orbits are preferred to plunging orbits. Therefore, some tension still exists between the required mass-to-light ratio for the Carina dSph in MOND and those expected from stellar population synthesis models. It remains to be seen whether a careful treatment of the binary population or triaxiality might reduce this tension.
    Monthly Notices of the Royal Astronomical Society 03/2014; 440(1). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we present a semi-analytical model of galactic wind for dwarf galaxies where thermal and turbulent/momentum driving mechanisms are studied. The model takes into account wave and internal adiabatic heating mechanisms, as well as radiative and adiabatic cooling. The importance of external sources of energy is discussed. We also studied the role of the spatial distribution of dark matter in the acceleration of the wind and in the mass-loss rates. The basic model parameters that regulate the wind mass-loss rate and terminal velocity are the gravitational potential profile, the equilibrium temperature of the gas and the amplitude of the turbulent motions of the gas. We found that dwarf galaxies are likely to present quasi-stationary winds with mass-loss rates larger than 10-3 M⊙ yr-1 even in the absence of turbulent motions (which is possibly related to the supernovae feedback), if the interstellar gas is heated to T > 104-105 K. We also found that the wind mass-loss rate is enhanced for cusped dark matter distributions, such as the Navarro-Frenk-White profile, due to the increased pressure gradients at the centre of the galaxy. The solutions presented here may serve as benchmarks for numerical simulations, and as inputs for single-zone chemical evolution models of dwarf galaxies.
    Monthly Notices of the Royal Astronomical Society 06/2013; 432(1):589-597. · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the standard cold dark matter (CDM) model there are still two major unsolved issues, simulations predict that the number of satellites around the Milky Way is higher than the current observed population, additionally high resolution observations in dwarf galaxies show that central densities are more consistent with constant density profiles (core profiles) in disagreement with CDM simulations. An alternative explanation that has been widely discussed is that the dark matter is a scalar field of a small mass, this is known as the scalar field dark matter (SFDM) model. The model can potentially solve the overabundance issue and successfully fit the density distribution found in dwarf galaxies. In fact, one of the attractive features of the model is the prediction of core profiles for the dark halos. Thus, in this paper we conduct N-Body simulations to explore the influence of tidal forces over a stellar distribution embedded in a SFDM halo orbiting a SFDM host halo that has a baryonic disk possessing parameters similar to the Milky Way. We found that galaxies in halos with core profiles and high central densities can survive for 10 Gyrs similar to the CDM subhalos, the same happens for galaxies in low density halos that are far from the host disk interaction, whereas satellites in low density dark matter halos and with tight orbits can be fully stripped of stars and eventually be dissolved. Therefore, we conclude that core profiles and small initial masses could be an alternative solution to the missing satellite problem present in CDM simulations.

Full-text (2 Sources)

Available from
Jan 8, 2015