A model of characteristic earthquakes and its implications for regional seismicity

Terra Nova (Impact Factor: 2.32). 05/2004; DOI: 10.1111/j.1365-3121.2004.00538.x

ABSTRACT Regional seismicity (i.e. that averaged over large enough areas over long enough periods of time) has a size–frequency relationship, the Gutenberg–Richter law, which differs from that found for some seismic faults, the Characteristic Earthquake relationship. But all seismicity comes in the end from active faults, so the question arises of how one seismicity pattern could emerge from the other. The recently introduced Minimalist Model of Vázquez-Prada et al. of characteristic earthquakes provides a simple representation of the seismicity originating from a single fault. Here, we show that a Characteristic Earthquake relationship together with a fractal distribution of fault lengths can accurately describe the total seismicity produced in a region. The resulting earthquake catalogue accounts for the addition of both all the characteristic and all the non-characteristic events triggered in the faults. The global accumulated size–frequency relationship strongly depends on the fault length fractal exponent and, for fractal exponents close to 2, correctly describes a Gutenberg–Richter distribution with a b exponent compatible with real seismicity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The idea that faults rupture in repeated, characteristic earthquakes is central to most probabilistic earthquake forecasts. The concept is elegant in its simplicity, and if the same event has repeated itself multiple times in the past, we might anticipate the next. In practice however, assembling a fault-segmented characteristic earthquake rupture model can grow into a complex task laden with unquantified uncertainty. We weigh the evidence that supports characteristic earthquakes against a potentially simpler model made from extrapolation of a Gutenberg-Richter magnitude-frequency law to individual fault zones. We find that the Gutenberg-Richter model satisfies key data constraints used for earthquake forecasting equally well as a characteristic model. Therefore, judicious use of instrumental and historical earthquake catalogs enables large-earthquake-rate calculations with quantifiable uncertainty that should get at least equal weighting in probabilistic forecasting.
    Bulletin of the Seismological Society of America 06/2009; 99(3):2012-2019. DOI:10.1785/0120080069 · 1.96 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The southern portion of the Upper Rhine Graben, a major oblique rift among France, Germany and Switzerland, shows a weak instrumental seismic record despite its remarkable physiographic imprint within the Northern Alpine foreland. Since traces of active deformation can be found in this region and based on experience in other European areas with high seismic hazard and dense population, we searched for past earthquakes recorded in historical catalogues. Based on the fact that tectonic deformation cumulates through geological time and considering that long-term effects tend to leave characteristic signatures on present-day landscape arrangement, our goal was to identify faults that could have caused the damage of recorded historical events.We isolated five main earthquakes, of moderate Richter magnitude, essentially located on the E flank of the graben (as is the case with recent seismic activity). To such events, we were able to associate a specific prospective structure through the use of a procedure thus far successfully employed in Southern European contexts. We concentrated on three events which showed (a) notable sensitivity to the density of the historical felt reports and (b) accordance with on-going subtle deformation pattern. Another, most relevant earthquake (M 5.5) yielded a promising match with the known deformation network in the region.As a template to better constrain earthquake cycle and damage potential, historical seismicity offers an invaluable tool, since it contains a specific record, although not always unambiguous. Cross-checking such data with pertinent geological information allows to devise a realistic fault geometry capable of being responsible for a specific seismic event.
    Quaternary Science Reviews 02/2005; DOI:10.1016/j.quascirev.2004.05.009 · 4.57 Impact Factor