Antagonism of Sigma-1 Receptors Blocks Compulsive-Like Eating

Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.83). 06/2012; 37(12):2593-604. DOI: 10.1038/npp.2012.89
Source: PubMed

ABSTRACT Binge eating disorder is an addiction-like disorder characterized by episodes of rapid and excessive food consumption within discrete periods of time which occur compulsively despite negative consequences. This study was aimed at determining whether antagonism of Sigma-1 receptors (Sig-1Rs) blocked compulsive-like binge eating. We trained male wistar rats to obtain a sugary, highly palatable diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day under fixed ratio 1 operant conditioning. Following intake stabilization, we evaluated the effects of the selective Sig-1R antagonist BD-1063 on food responding. Using a light/dark conflict test, we also tested whether BD-1063 could block the time spent and the food eaten in an aversive, open compartment, where the palatable diet was offered. Furthermore, we measured Sig-1R mRNA and protein expression in several brain areas of the two groups, 24 h after the last binge session. Palatable rats rapidly developed binge-like eating, escalating the 1 h intake by four times, and doubling the eating rate and the regularity of food responding, compared to Chow rats. BD-1063 dose-dependently reduced binge-like eating and the regularity of food responding, and blocked the increased eating rate in Palatable rats. In the light/dark conflict test, BD-1063 antagonized the increased time spent in the aversive compartment and the increased intake of the palatable diet, without affecting motor activity. Finally, Palatable rats showed reduced Sig-1R mRNA expression in prefrontal and anterior cingulate cortices, and a two-fold increase in Sig-1R protein expression in anterior cingulate cortex compared to control Chow rats. These findings suggest that the Sig-1R system may contribute to the neurobiological adaptations driving compulsive-like eating, opening new avenues of investigation towards pharmacologically treating binge eating disorder.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The potent orexigenic peptide neuropeptide Y (NPY) has been considered as a possible endogenous ligand for a subpopulation of sigma receptors (SigR). However, their mutual interaction with reference to feeding behavior remains poorly understood. In the present study, we explored the possible interaction between sigma1 receptors (Sig1R) agonist, pentazocine, and NPY on food intake in satiated rats. While pentazocine dose-dependently reduced the food intake, NPY significantly increased it at 2, 4 and 6 h post injection time points. In combination studies, pretreatment with NPY (0.1 nmol/rat, intra-PVN) normalized the inhibitory effect of pentazocine (60 μg/rat, intra-PVN) on food intake. Similarly, pre-treatment with pentazocine (30 μg/rat, intra-PVN) significantly antagonized the orexigenic effect of NPY (0.5 and 1.0 nmol/rat, intra-PVN). Moreover, pentazocine treatment decreased NPY immunoreactivity in arcuate (ARC), paraventricular (PVN), dorsomedial (DMH) and ventromedial (VMH) nuclei of hypothalamus. However, no change was observed in lateral hypothalamus (LH). Study implicates the reduced NPY immunoreactivity for the anorectic effect observed following pentazocine injections. Therefore, the concomitant activation of the NPYergic system along with the Sig1R agonist treatment, during pain management, may serve a useful purpose in the management of the unwanted side effects related to energy homeostasis.
    Neuropeptides 06/2014; DOI:10.1016/j.npep.2014.02.003 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impulsivity is a behavioral trait frequently seen in drug addicted individuals, but also in individuals who pathologically overeat. However, whether impulsivity predates the development of uncontrollable feeding is unknown. In this study we hypothesized that a high impulsivity trait precedes and confers vulnerability for food addiction-like behavior. For this purpose we trained ad libitum fed male Wistar rats in a differential reinforcement of low rates of responding (DRL) task to select high- and low-impulsive rats. Then, we allowed Low- and High-impulsive rats to self-administer a highly palatable diet (Palatable group) or a regular chow diet (Chow group) in 1 h daily sessions, under fixed ratio (FR) 1, FR3, FR5, and under a progressive ratio (PR) schedules of reinforcement. In addition, we tested the compulsiveness for food in Low- and High-impulsive rats by measuring the food eaten in the aversive, open compartment of a light/dark conflict test. Finally, we measured the expression of the transcription factor ΔFosB in the shell and the core of the nucleus accumbens which is a marker for neuroadaptive changes following addictive drug exposure. The data we obtained demonstrate that impulsivity is a trait which predicts the development of food addiction-like behaviors, including: i) excessive intake, ii) heightened motivation for food, and iii) compulsive-like eating, when rats are given access to highly palatable food. In addition, we show that the food addiction phenotype in high impulsive subjects is characterized by an increased expression of the transcription factor ΔFosB in the nucleus accumbens shell. These results prove that impulsivity confers an increased propensity to develop uncontrollable overeating of palatable food.Neuropsychopharmacology accepted article peview online, 29 April 2014. doi:10.1038/npp.2014.98.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 04/2014; DOI:10.1038/npp.2014.98 · 7.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of eating disorders and obesity in western societies is epidemic and increasing in severity. Preclinical research has focused on the development of animal models that can mimic the maladaptive patterns of food intake observed in certain forms of eating disorders and obesity. This study was aimed at characterizing a recently established model of palatable diet alternation in female rats. For this purpose, females rats were fed either continuously with a regular chow diet (Chow/Chow) or intermittently with a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Following diet cycling, rats were administered rimonabant (0, 0.3, 1, 3 mg/kg intraperitoneally) during access to either palatable diet or chow diet and were assessed for food intake and body weight. Finally, rats were pretreated with rimonabant (0, 3 mg/kg, intraperitoneally) and tested in the elevated plus maze during withdrawal from the palatable diet. Female rats with alternating access to palatable food cycled their intake, overeating during access to the palatable diet and undereating upon returning to the regular chow diet. Rimonabant treatment resulted in increased chow hypophagia and anxiety-like behavior in Chow/Palatable rats. No effect of drug treatment was observed on the compulsive eating of palatable food in the diet-cycled rats. The results of this study suggest that withdrawal from alternating access to the palatable diet makes individuals vulnerable to the anxiogenic effects of rimonabant and provides etiological factors potentially responsible for the emergence of severe psychiatric side-effects following rimonabant treatment in obese patients.
    Behavioural Pharmacology 07/2014; 25(7). DOI:10.1097/FBP.0000000000000059 · 2.19 Impact Factor


Available from
May 16, 2014