Article

Mutant p53: one name, many proteins.

Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
Genes & development (Impact Factor: 12.64). 06/2012; 26(12):1268-86. DOI: 10.1101/gad.190678.112
Source: PubMed

ABSTRACT There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function.

1 Follower
 · 
194 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell 04/2015; 161(2):240-254. DOI:10.1016/j.cell.2015.02.045 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytogenetic analysis has detected an accumulation of genetic lesions in oral cancers. Numerical changes in chromosome 17 might be associated with an up-regulation of p53 gene, and could contribute to critical events in carcinogenesis. The aim of this study was to reveal possible correlations between the numerical aberrations of chromosome 17, deletion or amplification of the P53 gene and histological grading in patients with oral squamous cell carcinoma (OSCC). This study was performed retrospectively on anonymous forty paraffin embedded specimens diagnosed with a primary OSCC. Sections were prepared for p53 immunohistochemical staining and FISH technique evaluation. All studied cases showed a positive nuclear staining with different indices for the p53 protein. Furthermore, statistical analysis showed a significant difference between all histological types of OSCC. In term of P53 immunoreactivity well differentiated OSCC showed the highest, whereas poorly differentiated showed weakest. Regarding chromosome 17 aberrations and p53 gene mutations, Spearman correlation test revealed a statistical significant positive correlation between chromosome 17 abnormalities and p53 gene mutations as well as with the immunohistochemical expression of p53 proteins. Moreover, the positive association between p53 gene mutations and the expression of p53 protein was statistically significant. In the light of the previous findings, we concluded that numerical aberrations of chromosome 17 and p53 gene mutations as well as expression of p53 protein have enormous influence on various cellular processes including differentiation and carcinogenesis. Such knowledge provides an easy and simplified approach to prognosis predilection for OSCC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2015_232 .
    Diagnostic Pathology 12/2015; 10(1). DOI:10.1186/s13000-015-0232-1 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting. Copyright © 2015. Published by Elsevier Ltd.
    Seminars in Cancer Biology 03/2015; DOI:10.1016/j.semcancer.2015.02.005 · 9.14 Impact Factor

Preview

Download
2 Downloads
Available from