Engraftment of human embryonic stem cell derived cardiomyocytes improves conduction in an arrhythmogenic in vitro model

Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
Journal of Molecular and Cellular Cardiology (Impact Factor: 5.22). 07/2012; 53(1):15-23. DOI: 10.1016/j.yjmcc.2012.01.023
Source: PubMed

ABSTRACT In this study, we characterized the electrophysiological benefits of engrafting human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in a model of arrhythmogenic cardiac tissue. Using transforming growth factor-β treated monolayers of neonatal rat ventricular cells (NRVCs), which retain several key aspects of the healing infarct such as an excess of contractile myofibroblasts and slowed, heterogeneous conduction, we assessed the ability of hESC-CMs to improve conduction and prevent arrhythmias. Cells from beating embryoid bodies (hESC-CMs) can form functional monolayers which beat spontaneously and can be electrically stimulated, with mean action potential duration of 275 ± 36 ms and conduction velocity (CV) of 10.6 ± 4.2 cm/s (n = 3). These cells, or cells from non-beating embryoid bodies (hEBCs) were added to anisotropic, NRVC monolayers. Immunostaining demonstrated hESC-CM survival and engraftment, and dye transfer assays confirmed functional coupling between hESC-CMs and NRVCs. Conduction velocities significantly increased in anisotropic NRVC monolayers after engraftment of hESC-CMs (13.4 ± 0.9 cm/s, n = 35 vs. 30.1 ± 3.2 cm/s, n = 20 in the longitudinal direction and 4.3 ± 0.3 cm/s vs. 9.3 ± 0.9 cm/s in the transverse direction), but decreased to even lower values after engraftment of non-cardiac hEBCs (to 10.6 ± 1.3 cm/s and 3.1 ± 0.5 cm/s, n = 11, respectively). Furthermore, reentrant wave vulnerability in NRVC monolayers decreased by 20% after engraftment of hESC-CMs, but did not change with engraftment of hEBCs. Finally, the culture of hESC-CMs in transwell inserts, which prevents juxtacrine interactions, or engraftment with connexin43-silenced hESC-CMs provided no functional improvement to NRVC monolayers. These results demonstrate that hESC-CMs can reverse the slowing of conduction velocity, reduce the incidence of reentry, and augment impaired electrical propagation via gap junction coupling to host cardiomyocytes in this arrhythmogenic in vitro model.

Download full-text


Available from: Paul Burridge, Jun 17, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac regenerative therapy with human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, has been hampered by the lack of efficient strategies for expanding functional cardiomyocytes (CMs) to clinically relevant numbers. The development of the massive suspension culture system (MSCS) has shed light on this critical issue, although it remains unclear how hPSCs could differentiate into functional CMs using a MSCS. The proliferative rate of differentiating hPSCs in the MSCS was equivalent to that in suspension cultures using nonadherent culture dishes, although the MSCS provided more homogeneous embryoid bodies (EBs), eventually reducing apoptosis. However, pluripotent markers such as Oct3/4 and Tra-1-60 were still expressed in EBs 2 weeks after differentiation, even in the MSCS. The remaining undifferentiated stem cells in such cultures could retain a strong potential for teratoma formation, which is the worst scenario for clinical applications of hPSC-derived CMs. The metabolic purification of CMs in glucose-depleted and lactate-enriched medium successfully eliminated the residual undifferentiated stem cells, resulting in a refined hPSC-derived CM population. In colony formation assays, no Tra-1-60-positive colonies appeared after purification. The nonpurified CMs in the MSCS produced teratomas at a rate of 60%. However, purified CMs never induced teratomas, and enriched CMs showed proper electrophysiological properties and calcium transients. Overall, the combination of a MSCS and metabolic selection is a highly effective and practical approach to purify and enrich massive numbers of functional CMs and provides an essential technique for cardiac regenerative therapy with hPSC-derived CMs.
    STEM CELLS TRANSLATIONAL MEDICINE 10/2014; 3(12). DOI:10.5966/sctm.2014-0072 · 3.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Stem cell therapy has been proposed as a potential treatment strategy for ischemic cardiomyopathy in recent years. A variety of stem cells or stem cell-derived cells can potentially be used for transplantation. Despite improved cardiac function after treatment, one of the major problems is the poor integration between host and donor cells which can lead to post-transplantation arrhythmia and poor long-term outcome. Methods: In the present study, we cocultured murine embryonic stem cells (mES) with murine embryonic ventricular myocytes (mEVs) in hanging drops to assess the cellular interaction and function of mES-derived cardiomyocytes under these conditions. Results: We found that when mEVs are added to a culture system of embryonic stem cells, the number of spontaneously beating areas in embryoid bodies (EBs) increases, intercellular gap junction communication is enhanced by upregulation of Cx43 expression at the mid-developmental stage and Cx43 is distributed more orderly between cardiomyocytes. Conclusions: Our findings suggest mES-derived cardiomyocytes are able to form effective signaling pathways through coculture with mEVs which is important for providing more functional grafts for cardiac cell therapy by improving the integration between transplanted and host cells.
    Cellular Physiology and Biochemistry 07/2013; 32(1):53-63. DOI:10.1159/000350124 · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were recently shown to be capable of electromechanical integration following direct injection into intact or recently injured guinea pig hearts, and hESC-CM transplantation in recently injured hearts correlated with improvements in contractile function and a reduction in the incidence of arrhythmias. The present study was aimed at determining the ability of hESC-CMs to integrate and modulate electrical stability following transplantation in a chronic model of cardiac injury.Methods and RESULTS: At 28 days following cardiac cryoinjury, guinea pigs underwent intracardiac injection of hESC-CMs, noncardiac hESC derivatives (non-CMs), or vehicle. Histology confirmed partial remuscularization of the infarct zone in hESC-CM recipients while non-CM recipients showed heterogeneous xenografts. The 3 experimental groups showed no significant difference in the left ventricular dimensions or fractional shortening by echocardiography or in the incidence of spontaneous arrhythmias by telemetric monitoring. Although recipients of hESC-CMs and vehicle showed a similar incidence of arrhythmias induced by programmed electrical stimulation at 4 weeks posttransplantation, non-CM recipients proved to be highly inducible, with a ∼3-fold greater incidence of induced arrhythmias. In parallel studies, we investigated the ability of hESC-CMs to couple with host myocardium in chronically injured hearts by the intravital imaging of hESC-CM grafts that stably expressed a fluorescent reporter of graft activation, the genetically encoded calcium sensor GCaMP3. In this work, we found that only ∼38% (5 of 13) of recipients of GCaMP3+ hESC-CMs showed fluorescent transients that were coupled to the host electrocardiogram. Human embryonic stem cell-derived cardiomyocytes engraft in chronically injured hearts without increasing the incidence of arrhythmias, but their electromechanical integration is more limited than previously reported following their transplantation in a subacute injury model. Moreover, non-CM grafts may promote arrhythmias under certain conditions, a finding that underscores the need for input preparations of high cardiac purity.
    Journal of Cardiovascular Pharmacology and Therapeutics 02/2014; 19(4). DOI:10.1177/1074248413520344 · 3.07 Impact Factor