Article

Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides.

National Center for Agricultural Utilization Research, Peoria, IL, United States.
Fungal Genetics and Biology (Impact Factor: 3.26). 06/2012; 49(8):602-12. DOI: 10.1016/j.fgb.2012.06.003
Source: PubMed

ABSTRACT The filamentous fungus Fusarium verticillioides can cause disease of maize and is capable of producing fumonisins, a family of toxic secondary metabolites linked to esophageal cancer and neural tube defects in humans and lung edema in swine and leukoencephalomalacia in equines. The expression of fumonisin biosynthetic genes is influenced by broad-domain transcription factors (global regulators) and Fum21, a pathway-specific transcription factor. LaeA is a global regulator that in Aspergillus nidulans, affects the expression of multiple secondary metabolite gene clusters by modifying heterochromatin structure. Here, we employed gene deletion analysis to assess the effect of loss of a F. verticillioides laeA orthologue, LAE1, on genome-wide gene expression and secondary metabolite production. Loss of Lae1 resulted in reduced expression of gene clusters responsible for synthesis of the secondary metabolites bikaverin, fumonisins, fusaric acid and fusarins as well as two clusters for which the corresponding secondary metabolite is unknown. Analysis of secondary metabolites revealed that, in contrast to a previously described Fusarium fujikuroi lae1 mutant, bikaverin production is reduced. Fumonisin production is unchanged in the F. verticillioides lae1 mutant. Complementation of the F. verticillioides mutant resulted in increased fumonisin production.

Download full-text

Full-text

Available from: Philipp Wiemann, Aug 11, 2014
0 Followers
 · 
182 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi, and it can modify heterochromatin structure in Aspergillus nidulans. We have recently shown that the LaeA ortholog of Trichoderma reesei (LAE1), a fungus that is an industrial producer of cellulase and hemicellulase enzymes, regulates the expression of cellulases and polysaccharide hydrolases. To learn more about the function of LAE1 in T. reesei, we assessed the effect of deletion and overexpression of lae1 on genome-wide gene expression. We found that in addition to positively regulating 7 of 17 polyketide or nonribosomal peptide synthases, genes encoding ankyrin-proteins, iron uptake, heterokaryon incompatibility proteins, PTH11-receptors, and oxidases/monoxygenases are major gene categories also regulated by LAE1. chromatin immunoprecipitation sequencing with antibodies against histone modifications known to be associated with transcriptionally active (H3K4me2 and -me3) or silent (H3K9me3) chromatin detected 4089 genes bearing one or more of these methylation marks, of which 75 exhibited a correlation between either H3K4me2 or H3K4me3 and regulation by LAE1. Transformation of a laeA-null mutant of A. nidulans with the T. reesei lae1 gene did not rescue sterigmatocystin formation and further impaired sexual development. LAE1 did not interact with A. nidulans VeA in yeast two-hybrid assays, whereas it interacted with the T. reesei VeA ortholog, VEL1. LAE1 was shown to be required for the expression of vel1, whereas the orthologs of velB and VosA are unaffected by lae1 deletion. Our data show that the biological roles of A. nidulans LaeA and T. reesei LAE1 are much less conserved than hitherto thought. In T. reesei, LAE1 appears predominantly to regulate genes increasing relative fitness in its environment.
    G3-Genes Genomes Genetics 02/2013; 3(2):369-78. DOI:10.1534/g3.112.005140 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fungal pathogens provoke devastating losses in agricultural production, contaminate food with mycotoxins, and give rise to life-threatening infections in humans. The soilborne ascomycete Fusarium oxysporum attacks over one hundred different crops and can cause systemic fusariosis in immunocompromised individuals. Here we functionally characterized VeA, VelB, VelC and LaeA, four components of the velvet protein complex which regulates fungal development and secondary metabolism. Deletion of veA, velB and to a minor extent velC caused a derepression of conidiation as well as alterations in the shape and size of microconidia. VeA and LaeA were required for full virulence of F. oxysporum on tomato plants and on immunodepressed mice. A critical contribution of velvet consists in promoting chromatin accessibility and expression of the biosynthetic gene cluster for beauvericin, a depsipeptide mycotoxin that functions as a virulence determinant. These results reveal a conserved role of the velvet complex during fungal infection on plants and mammals.
    Molecular Microbiology 10/2012; DOI:10.1111/mmi.12082 · 5.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heterotrimeric velvet complex VeA/VelB/LaeA is involved in the regulation of diverse cellular processes in Aspergillus nidulans. In this work, we investigated functions of two velvet-like genes BcVEA and BcVELB in Botrytis cinerea. Morphological characterization of BcVEA and BcVELB deletion mutants showed that the deletion of BcVEA and BcVELB led to increased conidiation and melanin biosynthesis. BcVEA and BcVELB deletion mutants also showed increased sensitivity to oxidative stress. Pathogenicity assays revealed that both BcVeA and BcVelB were essential for full virulence of B. cinerea. Yeast two-hybrid assay displayed the interaction of BcVeA with BcVelB. Results of this study indicate that BcVeA and BcVelB coordinate similar processes in the regulation of fungal development, oxidative stress response, and virulence in B. cinerea.
    Fungal Genetics and Biology 11/2012; 50. DOI:10.1016/j.fgb.2012.10.003 · 3.26 Impact Factor