Article

T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning.

Department of Oncology, Helsinki University Central Hospital , HUS , Finland.
Acta oncologica (Stockholm, Sweden) (Impact Factor: 2.27). 06/2012; DOI: 10.3109/0284186X.2012.692883
Source: PubMed

ABSTRACT Background and purpose. In radiotherapy (RT), target soft tissues are best defined on MR images. In several cases, CT imaging is needed only for dose calculation and generation of digitally reconstructed radiographs (DRRs). Image co-registration errors between MRI and CT can be avoided by using MRI-only based treatment planning, especially in the pelvis. Since electron density information can not be directly derived from the MRI, a method is needed to convert MRI data into CT like data. We investigated whether there is a relationship between MRI intensity and Hounsfield unit (HU) values for the pelvic bones. The aim was to generate a method to convert bone MRI intensity into HU data surrogate for RT treatment planning. Material and methods. The HU conversion model was generated for 10 randomly chosen prostate cancer patients and independent validation was performed in another 10 patients. Data consisted of 800 image voxels chosen within the pelvic bones in both T1/T2*-weighted gradient echo and CT images. Relation between MRI intensity and electron density was derived from calibrated HU-values. The proposed method was tested by constructing five "pseudo"-CT series. Results. We found that the MRI intensity is related to the HU value within a HU range from 0 to 1400 within the pelvic bones. The mean prediction error of the conversion model was 135 HU. Dose calculation based on the pseudo-CT images was accurate and the generated DRRs were of good quality. Conclusions. The proposed method enables generation of clinically relevant pseudo-CT data for the pelvic bones from one MRI series. It is simpler than previously reported approaches which require either acquisition of several MRI series or T2* maps with special imaging sequences. The method can be applied with commercial clinical image processing software. The application requires segmentation of the bones in the MR images.

0 Bookmarks
 · 
234 Views
  • Source
    ASTRO 56th annual meeting; 09/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. This work evaluates influences of susceptibility-induced bone outline shift and perturbations, and bone segmentation errors on external radiotherapy dose calculation accuracy in magnetic resonance imaging (MRI)-based pseudo-computed tomography (CT) images of the male pelvis. Material and methods. T1/T2*-weighted fast gradient echo, T1-weighted spin echo and T2-weighted fast spin echo images were used in bone detection investigation. Bone edge location and bone diameter in MRI were evaluated by comparing those in the images with actual physical measurements of fresh deer bones positioned in a gelatine phantom. Dose calculation accuracy in pseudo-CT images was investigated for 15 prostate cancer patients. Bone outlines in T1/T2*-weighted images were contoured and additional segmentation errors were simulated by expanding and contracting the bone contours with 1 mm spacing. Heterogeneous pseudo-CT images were constructed by adopting a technique transforming the MRI intensity values into Hounsfield units with separate conversion models within and outside of bone segment. Results. Bone edges and diameter in the phantom were illustrated correctly within a 1 mm-pixel size in MRI. Each 1 mm-sized systematic error in bone segment resulted in roughly 0.4% change to the prostate dose level in the pseudo-CT images. The prostate average (range) dose levels in pseudo-CT images with additional systematic bone segmentation errors of -2 mm, 0 mm and 2 mm were 0.5% (-0.5-1.4%), -0.2% (-1.0-0.7%), and -0.9% (-1.8-0.0%) compared to those in CT images, respectively, in volumetric modulated arc therapy treatment plans calculated by Monte Carlo algorithm. Conclusions. Susceptibility-induced bone outline shift and perturbations do not result in substantial uncertainty for MRI-based dose calculation. Dose consistency of 2% can be achieved reliably for the prostate if heterogeneous pseudo-CT images are constructed with ≤± 2 mm systematic error in bone segment.
    Acta oncologica (Stockholm, Sweden) 07/2014; · 2.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computed tomography (CT) substitute images can be generated from ultrashort echo time (UTE) MRI sequences with radial k-space sampling. These CT substitutes can be used as ordinary CT images for PET attenuation correction and radiotherapy dose calculations. Parallel imaging allows faster acquisition of magnetic resonance (MR) images by exploiting differences in receiver coil element sensitivities. This study investigates whether non-Cartesian parallel imaging reconstruction can be used to improve CT substitutes generated from shorter examination times.
    Medical physics. 08/2014; 41(8):082302.

Full-text (2 Sources)

Download
12 Downloads
Available from
Jul 24, 2014