Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components

Texas A&M University, TX, USA.
The International Journal of Biostatistics (Impact Factor: 1.28). 01/2011; 7(1):1-1. DOI: 10.2202/1557-4679.1267
Source: RePEc

ABSTRACT There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.

We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole grains. We demonstrate numerically that our methods lead to increased speed of computation, converge to reasonable solutions, and have the flexibility to be used in either a frequentist or a Bayesian manner.


Available from: Adriana Pérez, Jan 10, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the United States the preferred method of obtaining dietary intake data is the 24-hour dietary recall, yet the measure of most interest is usual or long-term average daily intake, which is impossible to measure. Thus, usual dietary intake is assessed with considerable measurement error. We were interested in estimating the population distribution of the Healthy Eating Index-2005 (HEI-2005), a multi-component dietary quality index involving ratios of interrelated dietary components to energy, among children aged 2-8 in the United States, using a national survey and incorporating survey weights. We developed a highly nonlinear, multivariate zero-inflated data model with measurement error to address this question. Standard nonlinear mixed model software such as SAS NLMIXED cannot handle this problem. We found that taking a Bayesian approach, and using MCMC, resolved the computational issues and doing so enabled us to provide a realistic distribution estimate for the HEI-2005 total score. While our computation and thinking in solving this problem was Bayesian, we relied on the well-known close relationship between Bayesian posterior means and maximum likelihood, the latter not computationally feasible, and thus were able to develop standard errors using balanced repeated replication, a survey-sampling approach.
    Statistical Science 05/2014; 29(1). DOI:10.1214/12-STS413 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundHazard ratios are ubiquitously used in time to event applications to quantify adjusted covariate effects. Although hazard ratios are invaluable for hypothesis testing, other adjusted measures of association, both relative and absolute, should be provided to fully appreciate studies results. The corrected group prognosis method is generally used to estimate the absolute risk reduction and the number needed to be treated for categorical covariates.MethodsThe goal of this paper is to present transformation models for time-to-event outcomes to obtain, directly from estimated coefficients, the measures of association widely used in biostatistics together with their confidence interval. Pseudo-values are used for a practical estimation of transformation models.ResultsUsing the regression model estimated through pseudo-values with suitable link functions, relative risks, risk differences and the number needed to treat, are obtained together with their confidence intervals. One example based on literature data and one original application to the study of prognostic factors in primary retroperitoneal soft tissue sarcomas are presented. A simulation study is used to show some properties of the different estimation methods.ConclusionsClinically useful measures of treatment or exposure effect are widely available in epidemiology. When time to event outcomes are present, the analysis is performed generally resorting to predicted values from Cox regression model. It is now possible to resort to more general regression models, adopting suitable link functions and pseudo values for estimation, to obtain alternative measures of effect directly from regression coefficients together with their confidence interval. This may be especially useful when, in presence of time dependent covariate effects, it is not straightforward to specify the correct, if any, time dependent functional form. The method can easily be implemented with standard software.
    BMC Medical Research Methodology 08/2014; 14(1):97. DOI:10.1186/1471-2288-14-97 · 2.17 Impact Factor
  • Statistics in Medicine 07/2014; 33(17):3058-9. DOI:10.1002/sim.6168 · 2.04 Impact Factor