Article

# Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components

Texas A&M University, TX, USA.

The International Journal of Biostatistics (Impact Factor: 1.28). 01/2011; 7(1):1-1. DOI: 10.2202/1557-4679.1267 Source: RePEc

### Full-text

Adriana Pérez, Jan 10, 2015 Available from: Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.

- [Show abstract] [Hide abstract]

**ABSTRACT:**In the United States the preferred method of obtaining dietary intake data is the 24-hour dietary recall, yet the measure of most interest is usual or long-term average daily intake, which is impossible to measure. Thus, usual dietary intake is assessed with considerable measurement error. We were interested in estimating the population distribution of the Healthy Eating Index-2005 (HEI-2005), a multi-component dietary quality index involving ratios of interrelated dietary components to energy, among children aged 2-8 in the United States, using a national survey and incorporating survey weights. We developed a highly nonlinear, multivariate zero-inflated data model with measurement error to address this question. Standard nonlinear mixed model software such as SAS NLMIXED cannot handle this problem. We found that taking a Bayesian approach, and using MCMC, resolved the computational issues and doing so enabled us to provide a realistic distribution estimate for the HEI-2005 total score. While our computation and thinking in solving this problem was Bayesian, we relied on the well-known close relationship between Bayesian posterior means and maximum likelihood, the latter not computationally feasible, and thus were able to develop standard errors using balanced repeated replication, a survey-sampling approach.Statistical Science 05/2014; 29(1). DOI:10.1214/12-STS413 · 1.69 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**BackgroundHazard ratios are ubiquitously used in time to event applications to quantify adjusted covariate effects. Although hazard ratios are invaluable for hypothesis testing, other adjusted measures of association, both relative and absolute, should be provided to fully appreciate studies results. The corrected group prognosis method is generally used to estimate the absolute risk reduction and the number needed to be treated for categorical covariates.MethodsThe goal of this paper is to present transformation models for time-to-event outcomes to obtain, directly from estimated coefficients, the measures of association widely used in biostatistics together with their confidence interval. Pseudo-values are used for a practical estimation of transformation models.ResultsUsing the regression model estimated through pseudo-values with suitable link functions, relative risks, risk differences and the number needed to treat, are obtained together with their confidence intervals. One example based on literature data and one original application to the study of prognostic factors in primary retroperitoneal soft tissue sarcomas are presented. A simulation study is used to show some properties of the different estimation methods.ConclusionsClinically useful measures of treatment or exposure effect are widely available in epidemiology. When time to event outcomes are present, the analysis is performed generally resorting to predicted values from Cox regression model. It is now possible to resort to more general regression models, adopting suitable link functions and pseudo values for estimation, to obtain alternative measures of effect directly from regression coefficients together with their confidence interval. This may be especially useful when, in presence of time dependent covariate effects, it is not straightforward to specify the correct, if any, time dependent functional form. The method can easily be implemented with standard software.BMC Medical Research Methodology 08/2014; 14(1):97. DOI:10.1186/1471-2288-14-97 · 2.17 Impact Factor - Statistics in Medicine 07/2014; 33(17):3058-9. DOI:10.1002/sim.6168 · 2.04 Impact Factor