Article

Genetic architecture of resilience of executive functioning

Department of Medicine, University of Washington, Box 359780, 325 Ninth Avenue, Seattle, WA, 98104, USA.
Brain Imaging and Behavior (Impact Factor: 4.6). 06/2012; 6(4). DOI: 10.1007/s11682-012-9184-1
Source: PubMed

ABSTRACT The genetic basis of resilience, defined as better cognitive functioning than predicted based on neuroimaging or neuropathology, is not well understood. Our objective was to identify genetic variation associated with executive functioning resilience. We computed residuals from regression models of executive functioning, adjusting for age, sex, education, Hachinski score, and MRI findings (lacunes, cortical thickness, volumes of white matter hyperintensities and hippocampus). We estimated heritability and analyzed these residuals in models for each SNP. We further evaluated our most promising SNP result by evaluating cis-associations with brain levels of nearby (±100 kb) genes from a companion data set, and comparing expression levels in cortex and cerebellum from decedents with AD with those from other non-AD diseases. Complete data were available for 750 ADNI participants of European descent. Executive functioning resilience was highly heritable (H(2) = 0.76; S.E. = 0.44). rs3748348 on chromosome 14 in the region of RNASE13 was associated with executive functioning resilience (p-value = 4.31 × 10(-7)). rs3748348 is in strong linkage disequilibrium (D' of 1.00 and 0.96) with SNPs that map to TPPP2, a member of the α-synuclein family of proteins. We identified nominally significant associations between rs3748348 and expression levels of three genes (FLJ10357, RNASE2, and NDRG2). The strongest association was for FLJ10357 in cortex, which also had the most significant difference in expression between AD and non-AD brains, with greater expression in cortex of decedents with AD (p-value = 7 × 10(-7)). Further research is warranted to determine whether this signal can be replicated and whether other loci may be associated with cognitive resilience.

Download full-text

Full-text

Available from: Shannon L Risacher, Mar 06, 2014
1 Follower
 · 
148 Views
 · 
25 Downloads
  • Source
    • "Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer's disease Fluid (CSF, blood) 24 Kim et al. 2011, Neurology Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort Neuropsychological assessments 22 Mukherjee et al. 2012a, Brain Imaging Behav Genetic architecture of resilience of executive functioning Method Univariate analysis 72 Stein et al. 2010a, NeuroImage Voxelwise genome-wide association study (vGWAS) Multivariate analysis 25 Hibar et al. 2011c, NeuroImage Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects Meta analysis 12 Stein et al. 2012, Nat Genet Identification of common variants associated with human hippocampal and intracranial volumes "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Genetics Core of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer’s disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development. Electronic supplementary material The online version of this article (doi:10.1007/s11682-013-9262-z) contains supplementary material, which is available to authorized users.
    Brain Imaging and Behavior 10/2013; 8(2). DOI:10.1007/s11682-013-9262-z · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of α-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world. Published by Elsevier Inc.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 10/2011; 8(1 Suppl):S1-68. DOI:10.1016/j.jalz.2011.09.172 · 17.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article summarizes a special series of articles from The Advanced Psychometric Methods in Cognitive Aging Research conference, held in June, 2011 at Friday Harbor, Washington. This conference used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to address cognitive change associated with Alzheimer's disease (AD) and how it related to neuroimaging, genetic, and cerebrospinal fluid biomarkers. The 13 articles in this series present innovative approaches to measuring cognition and studying determinants of cognitive decline in AD.
    Brain Imaging and Behavior 12/2012; 6(4). DOI:10.1007/s11682-012-9211-2 · 4.60 Impact Factor
Show more