Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.

Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
Journal of Fluorescence (Impact Factor: 1.79). 06/2012; 22(5):1313-43. DOI: 10.1007/s10895-012-1073-x
Source: PubMed

ABSTRACT Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Room temperature ionic liquids (ILs) have attracted interest for a wide variety of applications, yet many details regarding their physicochemical properties remain unclear, including how their bulk properties differ from those on the microscopic scale. In this work, 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS) was employed as a molecular rotor probe to investigate the microviscosities of three imidazolium ILs: butylmethylimidazolium tetrafluoroborate, butylmethylimidazolium hexafluorophosphate, and octylmethylimidazolium tetrafluoroborate. The photoluminescence quantum yields (PL QYs) for DMTPS in these ILs were compared to those measured for the same probe in nonpolar viscous (hexanes–mineral oil) and polar viscous (glycerol–ethanol) solvent systems and the microviscosities calculated using the Förster–Hoffmann equation. The PL QY of DMTPS was found to be higher in ILs than in low viscosity solvents but not as high as in nonpolar solvents of similar bulk viscosity. These results indicate that the microviscosity experienced by the silole in the ILs is less than the measured bulk viscosity, suggesting that the siloles occupy a “domain” within the IL matrix that allows enough free volume for the silole to deactivate rotationally. The stability of DMTPS was also shown to be greater in the ILs than in molecular solvents, suggesting that the IL medium might permit the construction of a robust optoelectronic device.
    Journal of Inorganic and Organometallic Polymers and Materials 01/2014; · 1.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present.
    Journal of Chromatography A 03/2014; · 4.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Room temperature ionic liquids (ILs) are a new type of solvent with peculiar properties. ILs are usually composed of an anion and a bulky cation with one or more alkyl chains to decrease the melting point. These structural peculiarities lead to the high viscosity and the heterogeneity of ILs, which could affect chemical reactions. In the present perspective, we will first introduce the experimentally observed nature of the heterogeneous liquid structure and then introduce recent developments in the study on electron transfer (ET) and charge transfer (CT) reactions in relation with the solvation and the heterogeneity of ILs. Because of the high viscosity of ILs, diffusive solvation is expected to be slow which could be the rate-limiting factor for ET and CT processes. However, ILs could provide a unique reaction field depending on the location of the solute within the heterogeneous liquid structure and the reaction could be faster than that expected from the bulk viscosity due to the fast fluctuation of the local environment.
    Physical Chemistry Chemical Physics 05/2014; · 4.20 Impact Factor