Article

Using new satellite based exposure methods to study the association between pregnancy PM₂.₅ exposure, premature birth and birth weight in Massachusetts.

Department of Environmental Health-Exposure, Epidemiology and Risk Program, Harvard School of Public Health, Landmark Center, 401 Park Dr West, Boston, MA 02215, USA.
Environmental Health (Impact Factor: 2.71). 06/2012; 11:40.
Source: PubMed

ABSTRACT Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias.
We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM₂.₅) levels during pregnancy in Massachusetts for a 9-year period (2000-2008). Building on a novel method we developed for predicting daily PM₂.₅ at the spatial resolution of a 10x10 km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM₂.₅ exposure and birth weight (among full term births) and PM₂.₅ exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health.
Birth weight was negatively associated with PM₂.₅ across all tested periods. For example, a 10 μg/m³ increase of PM₂.₅ exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI) = -21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI) = 1.01-1.13) for each 10 μg/m3 increase of PM₂.₅ exposure during the entire pregnancy period.
The presented study suggests that exposure to PM₂.₅ during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in infants.

0 Bookmarks
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal traffic-related air pollution exposure is linked to adverse birth outcomes. However, modifying effects of maternal body mass index (BMI) and infant sex remain virtually unexplored. We examined whether associations between prenatal air pollution and birth weight differed by sex and maternal BMI in 670 urban ethnically mixed mother-child pairs. Black carbon (BC) levels were estimated using a validated spatio-temporal land-use regression (LUR) model; fine particulate matter (PM2.5) was estimated using a hybrid LUR model incorporating satellite-derived Aerosol Optical Depth measures. Using stratified multivariable-adjusted regression analyses, we examined whether associations between prenatal air pollution and calculated birth weight for gestational age (BWGA) z-scores varied by sex and maternal pre-pregnancy BMI. Median birth weight was 3.3±0.6kg; 33% of mothers were obese (BMI ≥30kg/m(3)). In stratified analyses, the association between higher PM2.5 and lower birth weight was significant in males of obese mothers (-0.42 unit of BWGA z-score change per IQR increase in PM2.5, 95%CI: -0.79 to -0.06) ( PM2.5×sex×obesity Pinteraction=0.02). Results were similar for BC models (Pinteraction=0.002). Associations of prenatal exposure to traffic-related air pollution and reduced birth weight were most evident in males born to obese mothers. Copyright © 2014 Elsevier Inc. All rights reserved.
    Environmental Research 01/2015; 137C:268-277. · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several papers reported associations between airborne fine particulate matter (PM2.5) and birth weight, though findings are inconsistent across studies. Conflicting results might be due to (1) different PM2.5 chemical structure across locations, and (2) various exposure assignment methods across studies even among the studies that use ambient monitors to assess exposure. We investigated associations between birth weight and PM2.5 chemical constituents, considering issues arising from choice of buffer size (i.e. distance between residence and pollution monitor). We estimated the association between each pollutant and term birth weight applying buffers of 5 to 30 km in Connecticut (2000–2006), in the New England region of the USA. We also investigated the implication of the choice of buffer size in relation to population characteristics, such as socioeconomic status. Results indicate that some PM2.5 chemical constituents, such as nitrate, are associated with lower birth weight and appear more harmful than other constituents. However, associations vary with buffer size and the implications of different buffer sizes may differ by pollutant. A homogeneous pollutant level within a certain distance is a common assumption in many environmental epidemiology studies, but the validity of this assumption may vary by pollutant. Furthermore, we found that areas close to monitors reflect more minority and lower socio-economic populations, which implies that different exposure approaches may result in different types of study populations. Our findings demonstrate that choosing an exposure method involves key tradeoffs of the impacts of exposure misclassification, sample size, and population characteristics.
    Environmental Research Letters 08/2014; 9(8):084007. · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence has investigated the association between maternal exposure to PM2.5 (particulate matter with aerodynamic diameter 2.5 μm) during pregnancy and adverse pregnancy outcomes. However, the results of those studies are not consistent. To synthetically quantify the relationship between maternal exposure to PM2.5 during pregnancy and pregnancy outcomes (the change in birth weight, low birth weight (LBW), preterm birth (PTB), small for gestational age (SGA), and stillbirth), a meta-analysis of 25 published observational epidemiological studies that met our selection criteria was conducted. Results suggested a 10 μg/m(3) increase in PM2.5 was positively associated with LBW (odds ratio (OR) = 1.05; 95 % confidence interval (CI), 1.02-1.07), PTB (OR = 1.10; 95 % CI, 1.03-1.18), and SGA (OR = 1.15; 95 % CI, 1.10-1.20) based on entire pregnancy exposure, and pooled estimate of decrease in birth weight was 14.58 g (95 % CI, 9.86-19.31); however, there was no evidence of a statistically significant effect of per 10 μg/m(3) increase in PM2.5 exposure on the risk of stillbirth (OR = 1.18; 95 % CI, 0.69-2.04). With respect to three different gestation periods, no significant risks were found in PTB, stillbirth, and the first trimester on the change of birth weight with a 10 μg/m(3) increase in PM2.5. In this study, a comprehensive quantitative analysis of the results show that PM2.5 can increase the risk of LBW, PTB, and SGA; pregnant women need to take effective measures to reduce PM2.5 exposure.
    Environmental Science and Pollution Research 08/2014; 22(5). · 2.76 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Jun 10, 2014