Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation

Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
Journal of Neurochemistry (Impact Factor: 4.24). 06/2012; 122(5):941-51. DOI: 10.1111/j.1471-4159.2012.07836.x
Source: PubMed

ABSTRACT In vitro and in vivo models of Parkinson's disease (PD) suggest that increased oxidant production leads to mitochondrial dysfunction in dopaminergic neurons and subsequent cell death. However, it remains unclear if cell death in these models is caused by inhibition of mitochondrial function or oxidant production. The objective of this study was to determine the relationship between mitochondrial dysfunction and oxidant production in response to multiple PD neurotoxicant mimetics. MPP(+) caused a dose-dependent decrease in the basal oxygen consumption rate in dopaminergic N27 cells, indicating a loss of mitochondrial function. In parallel, we found that MPP(+) only modestly increased oxidation of hydroethidine as a diagnostic marker of superoxide production in these cells. Similar results were found using rotenone as a mitochondrial inhibitor, or 6-hydroxydopamine (6-OHDA) as a mechanistically distinct PD neurotoxicant, but not with exposure to paraquat. In addition, the extracellular acidification rate, used as a marker of glycolysis, was stimulated to compensate for oxygen consumption rate inhibition after exposure to MPP(+), rotenone, or 6-OHDA, but not paraquat. Together these data indicate that MPP(+), rotenone, and 6-OHDA dramatically shift bioenergetic function away from the mitochondria and towards glycolysis in N27 cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a multi-factorial disorder with a complex etiology including genetic risk factors, environmental exposures and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+] and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose 6-phosphate, fructose 6-phosphate, glucono-1,5-lactone and erythrose 4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose 6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat- induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress and cell death. Our study clearly demonstrates that alterations in energy metabolism, which are specific for distinct environmental toxins, are not bystanders to energy failure, but also contribute significant to cell death progression.
    ACS Chemical Biology 06/2014; 9(9). DOI:10.1021/cb400894a · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson's disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD.
    PLoS ONE 05/2014; 9(5):e96947. DOI:10.1371/journal.pone.0096947 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background:Targeting both mitochondrial bioenergetics and glycolysis pathway is an effective way to inhibit proliferation of tumour cells, including those that are resistant to conventional chemotherapeutics.Methods:In this study, using the Seahorse 96-well Extracellular Flux Analyzer, we mapped the two intrinsic cellular bioenergetic parameters, oxygen consumption rate and proton production rate in six different pancreatic cancer cell lines and determined their differential sensitivity to mitochondrial and glycolytic inhibitors.Results:There exists a very close relationship among intracellular bioenergetic parameters, depletion of ATP and anti-proliferative effects (inhibition of colony-forming ability) in pancreatic cancer cells derived from different genetic backgrounds treated with the glycolytic inhibitor, 2-deoxyglucose (2-DG). The most glycolytic pancreatic cancer cell line was exquisitely sensitive to 2-DG, whereas the least glycolytic pancreatic cancer cell was resistant to 2-DG. However, when combined with metformin, inhibitor of mitochondrial respiration and activator of AMP-activated protein kinase, 2-DG synergistically enhanced ATP depletion and inhibited cell proliferation even in poorly glycolytic, 2-DG-resistant pancreatic cancer cell line. Furthermore, treatment with conventional chemotherapeutic drugs (e.g., gemcitabine and doxorubicin) or COX-2 inhibitor, celecoxib, sensitised the cells to 2-DG treatment.Conclusions:Detailed profiling of cellular bioenergetics can provide new insight into the design of therapeutic strategies for inhibiting pancreatic cancer cell metabolism and proliferation.British Journal of Cancer advance online publication, 27 May 2014; doi:10.1038/bjc.2014.272
    British Journal of Cancer 05/2014; DOI:10.1038/bjc.2014.272 · 4.82 Impact Factor


Available from
May 20, 2014