Article

Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa).

Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, PR China.
BMC Genomics (Impact Factor: 4.4). 06/2012; 13:253. DOI: 10.1186/1471-2164-13-253
Source: PubMed

ABSTRACT CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date.
In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X(11)-C-X(6)-C-X(3)-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes.
This study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.

0 Bookmarks
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wood biomass is mainly made of secondary cell walls, whose formation is controlled by a multilevel network. The tandem CCCH zinc finger (TZF) proteins involved in plant secondary wall formation are poorly understood.Two TZF genes, PdC3H17 and PdC3H18, were isolated from Populus deltoides and functionally characterized in Escherichia coli, tobacco, Arabidopsis and poplar.PdC3H17 and PdC3H18 are predominantly expressed in cells of developing wood, and the proteins they encode are targeted to cytoplasmic foci. Transcriptional activation assays showed that PdMYB2/3/20/21 individually activated the PdC3H17 and PdC3H18 promoters, but PdMYB3/21 were most significant. Electrophoretic mobility shift assays revealed that PdMYB3/21 bound directly to the PdC3H17/18 promoters. Overexpression of PdC3H17/18 in poplar increased secondary xylem width and secondary wall thickening in stems, whereas dominant repressors of them had the opposite effects on these traits. Similar alteration in secondary wall thickening was observed in their transgenic Arabidopsis plants. qRT-PCR results showed that PdC3H17/18 regulated the expression of cellulose, xylan and lignin biosynthetic genes, and several wood-associated MYB genes.These results demonstrate that PdC3H17 and PdC3H18 are the targets of PdMYB3 and PdMYB21 and are an additional two components in the regulatory network of secondary xylem formation in poplar.
    New Phytologist 05/2014; · 6.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In plants, the R2R3-MYB gene family contains many pairs of paralogous genes, which play the diverse roles in developmental processes and environmental responses. The paper reports the characterization of 81 pairs of Populus R2R3-MYB genes. Chromosome placement, phylogenetic, and motif structure analyses showed that these gene pairs resulted from multiple types of gene duplications and had five different gene fates. Tissue expression patterns revealed that most duplicated genes were specifically expressed in the tissues examined. qRT-PCR confirmed that nine pairs were highly expressed in xylem, of which three pairs (PdMYB10/128, PdMYB90/167, and PdMYB92/125) were further functionally characterized. The six PdMYBs were localized to the nucleus and had transcriptional activities in yeast. The heterologous expression of PdMYB10 and 128 in Arabidopsis increased stem fibre cell-wall thickness and delayed flowering. In contrast, overexpression of PdMYB90, 167, 92, and 125 in Arabidopsis decreased stem fibre and vessel cell-wall thickness and promoted flowering. Cellulose, xylose, and lignin contents were changed in overexpression plants. The expression levels of several genes involved in secondary wall formation and flowering were affected by the overexpression of the six PdMYBs in Arabidopsis. This study addresses the diversity of gene duplications in Populus R2R3-MYBs and the roles of these six genes in secondary wall formation and flowering control.
    Journal of Experimental Botany 05/2014; · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CCCH-type zinc finger proteins comprise a large gene family of regulatory proteins and are widely distributed in eukaryotic organisms. The CCCH proteins have been implicated in multiple biological processes and environmental responses in plants. Little information is available, however, about CCCH genes in plants, especially in woody plants such as citrus. The release of the whole-genome sequence of citrus allowed us to perform a genome-wide analysis of CCCH genes and to compare the identified proteins with their orthologs in model plants. In this study, 62 CCCH genes and a total of 132 CCCH motifs were identified, and a comprehensive analysis including the chromosomal locations, phylogenetic relationships, functional annotations, gene structures and conserved motifs was performed. Distribution mapping revealed that 54 of the 62 CCCH genes are unevenly dispersed on the nine citrus chromosomes. Based on phylogenetic analysis and gene structural features, we constructed 5 subfamilies of 62 CCCH members and integrative subfamilies from citrus, Arabidopsis, and rice, respectively. Importantly, large numbers of SNPs and InDels in 26 CCCH genes were identified from Poncirus trifoliata and Fortunella japonica using whole-genome deep re-sequencing. Furthermore, citrus CCCH genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various stress conditions. Our comprehensive analysis of CleC3Hs is a valuable resource that further elucidates the roles of CCCH family members in plant growth and development. In addition, variants and comparative genomics analyses deepen our understanding of the evolution of the CCCH gene family and will contribute to further genetics and genomics studies of citrus and other plant species.
    MGG Molecular & General Genetics 05/2014; · 2.58 Impact Factor

Full-text (2 Sources)

Download
61 Downloads
Available from
May 22, 2014