Anti-CD3 × anti-GD2 bispecific antibody redirects T-cell cytolytic activity to neuroblastoma targets

Department of Oncology, Wayne State University, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
Pediatric Blood & Cancer (Impact Factor: 2.39). 12/2012; 59(7):1198-205. DOI: 10.1002/pbc.24237
Source: PubMed


The ganglioside GD2 is an attractive target for immunotherapy of neuroectodermal tumors. We tested a unique bispecific antibody anti-CD3 × anti-GD2 (3F8BiAb) for its ability to redirect activated T cells (ATC) to target GD2-positive neuroblastomas.
ATC were generated from normal human peripheral blood mononuclear cells (PBMC) by stimulating the PBMC with OKT3 and expanding the T cells in the presence of interleukin 2 (IL-2) for 14 days. ATC were armed with 3F8BiAb (100 ng/10(6)  cells) or Her2BiAb (50 ng/10(6)  cells) prior to use. 3F8 BiAb were tested for its dual-binding specificity to GD2 expressed on cancer cell lines and CD3 expressed on ATC. 3F8BiAb-armed ATC were further tested ex vivo for their cytotoxicity against GD2 positive tumor targets and its ability to induce cytokine response upon binding to targets.
GD2 expression in neuroblastoma cells was confirmed by FACS analysis. Specific binding of 3F8BiAb to the tumor targets as well as to ATC was confirmed by FACS analysis. 3F8BiAb-armed ATC exhibited specific killing of GD2 positive neuroblastoma cell lines significantly above unarmed ATC (P < 0.001). GD2BiAb-armed ATC secreted significantly higher levels of Th(1) cytokines and chemokines compared to unarmed ATC (P < 0.001).
These preclinical findings support the potential of a novel immunotherapeutic approach to target T cells to neuroblastoma. Pediatr Blood Cancer 2012; 59: 1198-1205. © 2012 Wiley Periodicals, Inc.

Download full-text


Available from: Maxim Yankelevich, Mar 19, 2014
  • Source
    • "Previously we have shown that T cells expanded from the leukapheresis product or PBMC from the immunosuppressive environment of cancer patients can be stimulated to improve their functions in vitro as well as in vivo[30,31]. ATC armed with anti-CD3 x anti-tumor associated antigen BiAbs exhibit high levels of specific cytotoxicity against tumor cells expressing Her2/neu [17,18,32], CD20 [15], GD2 [33], and EGFR [16,19] via redirected non-MHC-restricted perforin/granzyme-dependent killing. Furthermore, arming with BiAbs creates artificial cytotoxic T lymphocytes wherein TCR engagement via BiAb-bridge between the armed ATC and the antigen on the tumor cells induces release of significantly higher levels of IFN-γ, IL-2R, IL-12, CCL3, CCL4 and CXCL9, compared to unarmed ATC used as controls [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). Methods PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt’s lymphoma cell line (Daudi). Results In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. Conclusions Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies.
    Journal of Translational Medicine 07/2014; 12(1):191. DOI:10.1186/1479-5876-12-191 · 3.93 Impact Factor
  • Source
    • "Arming ATC with HER2Bi or EGFRBi converts every ATC into a specific cytotoxic T cell [3-7]. Our preclinical studies show that armed ATC can target breast [6], prostate [8], ovarian [5] EGFR+ cancers (head & neck, colorectal, pancreatic, lung [4], neuroblastomas [9], and CD20+ NHL [7]. ATC armed with HER2Bi were not only able to lyse cancer cells that have high (3+) expression of HER2 but more importantly target and lyse MCF-7 cells that express low or nil HER2 expression [6] Moreover, armed ATC can kill multiple times, secrete cytokines/chemokines and multiply after engaging tumor cells in vitro[10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. Methods ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. Results EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. Conclusion High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens.
    BMC Cancer 02/2013; 13(1):83. DOI:10.1186/1471-2407-13-83 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Copyright: © 2012 Naujokat C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Cancer stem cells (CSCs) constitute a distinct subpopulation of tumor cells that exhibit self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of cancer cells that comprise the tumor. CSCs possess various intrinsic mechanisms of resistance to conventional chemotherapeutics, novel tumor-targeted drugs and radiation therapy, permitting them to survive current cancer therapies and to initiate tumor recurrence and metastasis. Different cell surface and transmembrane proteins expressed by CSCs, including CD44, CD47, EpCAM (CD326), CD123, CD133, GD2, Lgr5, insulin-like growth factor receptor I (IGF-IR), and members of the Notch and Wnt signaling pathways, have been identified and mainly used for the characterization of CSCs in experimental settings. Recently, monoclonal antibodies and antibody constructs such as Triomabs and BiTEs raised against these CSC proteins have shown efficacy against CSCs in human xenograft mice, and some of them have been demonstrated to induce tumor regression in clinical trials. Since current cancer therapies fail to eliminate CSCs, ultimately leading to cancer recurrence and progression, selective targeting of CSCs with mAbs and antibody constructs reviewed herein may represent a novel and promising therapeutic strategy to eradicate cancer.
    12/2012; 2012(S5):007. DOI:10.4172/2155-9899.S5-007
Show more