Article

Hairy cell leukemia cell lines expressing annexin A1 and displaying B-cell receptor signals characteristic of primary tumor cells lack the signature BRAF mutation to reveal unrepresentative origins.

Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K (Impact Factor: 9.38). 06/2012; DOI: 10.1038/leu.2012.163
Source: PubMed
0 Followers
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cell receptor (BCR) signalling plays a critical role in the progression of several B-cell malignancies, but its role in hairy cell leukaemia (HCL) is ambiguous. Bruton tyrosine kinase (BTK), a key player in BCR signalling, migration and adhesion, can be targeted with ibrutinib, a selective, irreversible BTK inhibitor. We analysed BTK expression and function in HCL and analysed the effects of ibrutinib on HCL cells. We demonstrated uniform BTK protein expression in HCL cells. Ibrutinib significantly inhibited HCL proliferation and cell cycle progression. Accordingly, ibrutinib also reduced HCL cell survival after BCR triggering with anti-immunoglobulins (A, G, and M) and abrogated the activation of kinases downstream of the BCR (PI3K and MAPK). Ibrutinib also inhibited BCR-dependent secretion of the chemokines CCL3 and CCL4 by HCL cells. Interestingly, ibrutinib inhibited CXCL12-induced signalling, a key pathway for bone marrow homing. Collectively, our data support the clinical development of ibrutinib in patients with HCL.
    British Journal of Haematology 04/2014; 166(2). DOI:10.1111/bjh.12867 · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hairy cell leukemia (HCL) is part of the low-grade non-Hodgkin lymphoma family and represents approximately 2% of all leukemias. Treatment with splenectomy and interferon-α historically belonged to the first steps of therapeutic options, achieving partial responses/remissions (PR) in most cases with a median survival between 4 and 6 years in the 1980s. The introduction of the purine analogs (PA) pentostatin and cladribine made HCL a well-treatable disease: overall complete response rates (CRR) range from 76 to 98%, with a median disease-free survival (DFS) of 16 years a normal lifespan can be reached and HCL-related deaths are rare. However, insufficient response to PA with poorer prognosis and relapse rates of 30-40% after 5-10 years of follow-up may require alternative strategies. Minimal residual disease can be detected by additional examinations of bone marrow specimens after treatment with PA. The use of immunotherapeutic monoclonal antibodies (mAB) like rituximab as a single agent or in combination with a PA or more recently clinical trials with recombinant immunotoxins (RIT) show promising results to restrict these problems. Recently, the identification of the possible disease-defining BRAF V600E mutation may allow the development of new therapeutic targets.
    Blood Cancer Journal 02/2014; 4(2):e184. DOI:10.1038/bcj.2014.3 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hairy cell leukemia (HCL) shows unique clinico-pathological and biological features. HCL responds well to purine analogues but relapses are frequent and novel therapies are required. BRAF-V600E is the key driver mutation in HCL and distinguishes it from other B-cell lymphomas, including HCL-like leukemias/lymphomas (HCL-variant and splenic marginal zone lymphoma). The kinase-activating BRAF-V600E mutation also represents an ideal therapeutic target in HCL. Here, we investigated the biological and therapeutic importance of the activated BRAF-MEK-ERK pathway in HCL by exposing in vitro primary leukemic cells purified from 26 patients to clinically available BRAF (Vemurafenib; Dabrafenib) or MEK (Trametinib) inhibitors. Results were validated in vivo in samples from Vemurafenib-treated HCL patients within a phase-2 clinical trial. BRAF and MEK inhibitors caused, specifically in HCL (but not HCL-like) cells, marked MEK/ERK dephosphorylation, silencing of the BRAF-MEK-ERK pathway transcriptional output, loss of the HCL-specific gene expression signature, downregulation of the HCL markers CD25, TRAP and cyclin-D1, smoothening of leukemic cells' hairy surface, and, eventually, apoptosis. Apoptosis was partially blunted by co-culture with bone marrow stromal cells antagonizing MEK-ERK dephosphorylation. This protective effect could be counteracted by combined BRAF and MEK inhibition. Our results strongly support and inform the clinical use of BRAF and MEK inhibitors in HCL. Copyright © 2014 American Society of Hematology.
    Blood 12/2014; 125(8). DOI:10.1182/blood-2014-10-603100 · 9.78 Impact Factor