On the mass radiated by coalescing black-hole binaries

The Astrophysical Journal (Impact Factor: 6.28). 06/2012; 758(1). DOI: 10.1088/0004-637X/758/1/63
Source: arXiv

ABSTRACT We derive an analytic phenomenological expression that predicts the final
mass of the black-hole remnant resulting from the merger of a generic binary
system of black holes on quasi-circular orbits. Besides recovering the correct
test-particle limit for extreme mass-ratio binaries, our formula reproduces
well the results of all the numerical-relativity simulations published so far,
both when applied at separations of a few gravitational radii, and when applied
at separations of tens of thousands of gravitational radii. These validations
make our formula a useful tool in a variety of contexts ranging from
gravitational-wave physics to cosmology. As representative examples, we first
illustrate how it can be used to decrease the phase error of the
effective-one-body waveforms during the ringdown phase. Second, we show that,
when combined with the recently computed self-force correction to the binding
energy of nonspinning black-hole binaries, it provides an estimate of the
energy emitted during the merger and ringdown. Finally, we use it to calculate
the energy radiated in gravitational waves by massive black-hole binaries as a
function of redshift, using different models for the seeds of the black-hole

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from an extensive study of 88 precessing, equal-mass black-hole binaries with large spins (83 with intrinsic spins of 0.8 and 5 with intrinsic spins of 0.9)and use these data to model new nonlinear contributions to the gravitational recoil imparted to the merged black hole. We find a new effect, the cross kick, that enhances the recoil for partially aligned binaries beyond the hangup kick effect. This has the consequence of increasing the probabilities of recoils larger than 2000 km/s by nearly a factor two, and, consequently, of black holes getting ejected from galaxies, as well as the observation of large differential redshifts/blueshifts in the cores of recently merged galaxies.
    Physical review D: Particles and fields 11/2012; 87(8). DOI:10.1103/PhysRevD.87.084027 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous analytic and numerical calculations suggest that, at each instant, the emission from a precessing black hole binary closely resembles the emission from a nonprecessing analog. In this paper we quantitatively explore the validity and limitations of that correspondence, extracting the radiation from a large collection of roughly two hundred generic black hole binary merger simulations both in the simulation frame and in a corotating frame that tracks precession. To a first approximation, the corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited frequency interval defined using a fiducial detector (here, advanced LIGO) and the source's total mass $M$. By restricting attention to masses $M\in 100, 1000 M_\odot$, we insure our comparisons are sensitive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every one of our precessing simulations can be fit by some physically similar member of the \texttt{IMRPhenomB} phenomenological waveform family to better than 95%; most fit significantly better. The best-fit parameters at low and high mass correspond to natural physical limits: the pre-merger orbit and post-merger perturbed black hole. Our results suggest that physically-motivated synthetic signals can be derived by viewing radiation from suitable nonprecessing binaries in a suitable nonintertial reference frame. While a good first approximation, precessing systems have degrees of freedom (i.e., the transverse spins) which a nonprecessing simulation cannot reproduce. We quantify the extent to which these missing degrees of freedom limit the utility of synthetic precessing signals for detection and parameter estimation.
    Physical review D: Particles and fields 04/2013; 88(2). DOI:10.1103/PhysRevD.88.024040 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The behavior of merging black holes (including the emitted gravitational waves and the properties of the remnant) can currently be computed only by numerical simulations. This paper introduces ten numerical relativity simulations of binary black holes with equal masses and equal spins aligned or anti-aligned with the orbital angular momentum. The initial spin magnitudes have $|\chi_i| \lesssim 0.95$ and are more concentrated in the aligned direction because of the greater astrophysical interest of this case. We combine this data with five previously reported simulations of the same configuration, but with different spin magnitudes, including the highest spin simulated to date, $\chi_i \approx 0.97$. This data set is sufficiently accurate to enable us to offer improved analytic fitting formulae for the final spin and for the energy radiated by gravitational waves as a function of initial spin. The improved fitting formulae can help to improve our understanding of the properties of binary black hole merger remnants and can be used to enhance future approximate waveforms for gravitational wave searches, such as Effective-One-Body waveforms.
    Physical review D: Particles and fields 05/2013; 88(6). DOI:10.1103/PhysRevD.88.064014 · 4.86 Impact Factor
Show more


Available from