Inhibition of erythropoiesis by Smad6 in human cord blood hematopoietic stem cells.

Laboratory of Immunology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 06/2012; 423(4):750-6. DOI: 10.1016/j.bbrc.2012.06.031
Source: PubMed

ABSTRACT Bone morphogenetic proteins (BMPs) that belong to the transforming growth factor-β (TGF-β) superfamily cytokines, play crucial roles in hematopoiesis. However, roles of Smad6 in hematopoiesis remained unknown in contrast to the other inhibitory Smad (I-Smad), Smad7. Here we show that Smad6 inhibits erythropoiesis in human CD34(+) cord blood hematopoietic stem cells (HSCs). Smad6 was specifically expressed in CD34(+) cord blood HSCs, which was correlated with the expression of BMP2/4/6/7 and BMP type I receptor (BMPRI). BMP-specific receptor-regulated Smads (R-Smads), Smad1 and Smad5 in cooperation with Smad4 induced transcription of the Smad6 gene. Instead of affecting cell cycle, apoptosis, self-renewal, and stemness of CD34(+) cells, Smad6 knockdown enhanced, whereas Smad6 overexpression suppressed erythropoiesis in stem cell culture and colony formation assay. Consistently, Smad6 suppressed the expression of the genes essential for erythropoiesis, such as Kruppel-like factor 1 (erythroid) (KLF1/EKLF) and GATA binding protein 2 (GATA-2). Promoter analyses showed that Smad6 repressed Smad5/4-induced transcription of the Klf1 gene. Thus, our data suggest that Smad6 indirectly maintains stemness by preventing spontaneous erythropoiesis in HSCs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of hepatic progenitor cells (HPCs) is commonly observed in chronic liver disease and Wnt/β-catenin signaling plays a crucial role in the expansion of HPCs. However, the molecular mechanisms that regulate the activation of Wnt/β-catenin signaling in the liver, especially in HPCs, remain largely elusive. Here, we reported that ectopic expression of Smad6 suppressed the proliferation and self-renewal of WB-F344 cells, a HPC cell line. Mechanistically, we found that Smad6 inhibited Wnt/β-catenin signaling through promoting the interaction of C-terminal binding protein (CtBP) with β-catenin/T-cell factor (TCF) complex to inhibit β-catenin mediated transcriptional activation in WB-F344 cells. We used siRNA targeting β-catenin to demonstrate that Wnt/β-catenin signaling was required for the proliferation and self-renewal of HPCs. Taken together, these results suggest that Smad6 is a regulatory molecule which regulates the proliferation, self-renewal and Wnt/β-catenin signaling in HPCs. J. Cell. Physiol. 229: 651-660, 2014. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 05/2014; 229(5):651-60. · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The roles of DHHC-containing proteins in embryonic cell fate specification are not well defined, nor are the underlying mechanisms of their activity well understood. Here, we compared the embryonic function of zinc finger DHHC-type containing (Zdhhc13) in zebrafish embryos and in an in vitro cell model. Zdhhc13, a critical regulator of bone morphogenetic protein (BMP) signaling, specifically bound to Smad6 to induce its perinuclear accumulation and degradation through a mechanism independent of its palmitoyltransferase activity. We showed Zdhhc13 played a crucial role during zebrafish embryogenesis in the control of germ layer specification, particularly in ectoderm and mesoderm differentiation homeostasis. Depletion of Zdhhc13 led to the neuralization of ectoderm and dorsalization of mesoderm in zebrafish embryos. Moreover, Zdhhc13 antagonized Smad6 during BMP-dependent signaling and early lineage decisions in our in vitro cell model. Our results extended the cellular role of Zdhhc13, suggesting that it acts as a regulator in BMP signaling, and established that the embryonic function of Zdhhc13 is in lineage specification.
    Stem cells and development 04/2014; · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Erythroid Krüppel-like Factor (EKLF or KLF1) is a transcriptional regulator that plays a critical role in lineage-restricted control of gene expression. KLF1 expression and activity are tightly controlled in a temporal and differentiation stage-specific manner. The mechanisms by which KLF1 is regulated encompass a range of biological processes, including control of KLF1 RNA transcription, protein stability, localization, and post-translational modifications. Intact KLF1 regulation is essential to correctly regulate erythroid function by gene transcription, as well as to maintain hematopoietic lineage homeostasis by ensuring a proper balance of erythroid/megakaryocytic differentiation. In turn, KLF1 regulates erythroid biology by a wide variety of mechanisms, including gene activation and repression by regulation of chromatin configuration, transcriptional initiation and elongation, and localization of gene loci to transcription factories in the nucleus. An extensive series of biochemical, molecular, and genetic analyses have uncovered some of the secrets of its success, and recent studies are highlighted here. These reveal a multi-layered set of control mechanisms that enable efficient and specific integration of transcriptional and epigenetic controls and that pave the way for proper lineage commitment and differentiation.
    Molecular and Cellular Biology 10/2012; · 5.04 Impact Factor