• Journal of Agricultural and Food Chemistry 09/1992; 40(9). DOI:10.1021/jf00021a035 · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We sought to investigate the mechanisms for oxidative injury caused by subarachnoid hemolysate, a pro-oxidant. Injection of 50 microL of subarachnoid hemolysate or saline was performed in CD1 mice (n=75), mutant mice deficient in Mn-superoxide dismutase (Sod2+/-; n=23), and their wild-type littermates (n=23). Subcellular location of cytochrome c was studied by immunocytochemistry, immunofluorescence, and immunoblotting of cellular fractions. DNA fragmentation was assessed though DNA laddering and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL). Cell death was examined through basic histology. Cytochrome c immunoreactivity was present in the cytosol of neurons at 2 hours after hemolysate injection and increased by 4 hours compared with saline-injected animals (P:<0.02). Cytosolic cytochrome c was more abundant in Sod2+/- mutants. DNA fragmentation was evident at 24 hours, but not 4 hours, after hemolysate injection as determined by DNA laddering and TUNEL staining (P:<0.02). DNA fragmentation colocalized to cells with cytosolic cytochrome c and iron. In Sod2+/- mutants, the extent of fragmentation was increased as determined by TUNEL staining (52% increase; P:<0.02) and DNA laddering (optical density=0.819 versus 0.391; P:<0.01). Cell death was evident on basic histology as early as 4 hours after hemolysate injection. No cell death was evident in controls. In Sod2+/- mutants, cell death was increased by 51% compared with wild-type littermates (P:<0.05). These results demonstrate that subarachnoid blood products are associated with the presence of cytochrome c in the cytosol and subsequent cell death in neurons. It appears that Mn-superoxide dismutase plays a role in preventing cell death after exposure to subarachnoid blood products.
    Stroke 02/2001; 32(2):506-15. DOI:10.1161/01.STR.32.2.506 · 6.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.
    Insect Biochemistry and Molecular Biology 06/2005; 35(5):443-59. DOI:10.1016/j.ibmb.2005.01.014 · 3.42 Impact Factor
Show more


Available from
May 28, 2014