Bone marrow transplantation increases efficacy of central nervous system-directed enzyme replacement therapy in the murine model of globoid cell leukodystrophy

Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
Molecular Genetics and Metabolism (Impact Factor: 2.83). 06/2012; 107(1-2):186-96. DOI: 10.1016/j.ymgme.2012.05.021
Source: PubMed

ABSTRACT Globoid cell leukodystrophy (GLD, Krabbe disease), is an autosomal recessive, neurodegenerative disease caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). In the absence of GALC, the toxic metabolite psychosine accumulates in the brain and causes the death of the myelin-producing cells, oligodendrocytes. Currently, the only therapy for GLD is hematopoietic stem cell transplantation using bone marrow (BMT) or umbilical cord blood. However, this is only partially effective. Previous studies have shown that enzyme replacement therapy (ERT) provides some therapeutic benefit in the murine model of GLD, the Twitcher mouse. Experiments have also shown that two disparate therapies can produce synergistic effects when combined. The current study tests the hypothesis that BMT will increase the therapeutic effects of ERT when these two treatments are combined. Twitcher mice were treated with either ERT alone or both ERT and BMT during the first 2-4days of life. Recombinant enzyme was delivered by intracerebroventricular (ICV) and intrathecal (IT) injections. Twitcher mice receiving ERT had supraphysiological levels of GALC activity in the brain 24h after injection. At 36days of age, ERT-treated Twitcher mice had reduced psychosine levels, reduced neuroinflammation, improved motor function, and increased lifespan. Twitcher mice receiving both ERT and BMT had significantly increased lifespan, improved motor function, reduced psychosine levels, and reduced neuroinflammation in certain areas of the brain compared to untreated or ERT-treated Twitcher mice. Together, these results indicate that BMT enhances the efficacy of ERT in GLD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Globoid cell leukodystrophy (GLD) or Krabbe disease is an autosomal recessive disorder resulting from the defective lysosomal enzyme galactocerebrosidase (GALC). The lack of GALC enzyme leads to severe neurological symptoms. While most human patients are infants who do not survive beyond 2years of age, older patients are also diagnosed. In addition to human patients, several naturally occurring animal models, including dog, mouse, and monkey, have also been identified. The mouse model of Krabbe disease, twitcher (twi) mouse has been used for many treatment trials including gene therapy. Using the combination of intracerebroventricular, intracerebellar, and intravenous (iv) injection of the adeno-associated virus serotype rh10 (AAVrh10) expressing mouse GALC in neonate twi mice we previously have demonstrated a significantly extended normal life and exhibition of normal behavior in treated mice. In spite of the prolonged healthy life of these treated mice and improved myelination, it is unlikely that using multiple injection sites for viral administration will be approved for treatment of human patients. In this study, we have explored the outcome of the single iv injection of viral vector at post-natal day 10 (PND10). This has resulted in increased GALC activity in the central nervous system (CNS) and high GALC activity in the peripheral nervous system (PNS). As we have shown previously, an iv injection of AAVrh10 at PND2 results in a small extension of life beyond the typical lifespan of the untreated twi mice (~40days). In this study, we report that mice receiving a single iv injection at PND10 had no tremor and continued to gain weight until a few weeks before they died. On average, they lived 20-25days longer than untreated mice. We anticipate that this strategy in combination with other therapeutic options may be beneficial and applicable to treatment of human patients. Copyright © 2014 Elsevier Inc. All rights reserved.
    Molecular Genetics and Metabolism 12/2014; 114(3). DOI:10.1016/j.ymgme.2014.12.300 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Globoid cell leukodystrophy (GLD, Krabbe disease) is a lysosomal storage disease (LSD) caused by a deficiency in galactocerebrosidase (GALC) activity. In the absence of GALC activity, the cytotoxic lipid, galactosylsphingosine (psychosine), accumulates in the CNS and peripheral nervous system. Oligodendrocytes and Schwann cells are particularly sensitive to psychosine, thus leading to a demyelinating phenotype. Although hematopoietic stem-cell transplantation provides modest benefit in both presymptomatic children and the murine model (Twitcher), there is no cure for GLD. In addition, GLD has been relatively refractory to virtually every experimental therapy attempted. Here, Twitcher mice were simultaneously treated with CNS-directed gene therapy, substrate reduction therapy, and bone marrow transplantation to target the primary pathogenic mechanism (GALC deficiency) and two secondary consequences of GALC deficiency (psychosine accumulation and neuroinflammation). Simultaneously treating multiple pathogenic targets resulted in an unprecedented increase in life span with improved motor function, persistent GALC expression, nearly normal psychosine levels, and decreased neuroinflammation. Treating the primary pathogenic mechanism and secondary targets will likely improve therapeutic efficacy for other LSDs with complex pathological and clinical presentations. Copyright © 2015 the authors 0270-6474/15/356495-11$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 04/2015; 35(16):6495-505. DOI:10.1523/JNEUROSCI.4199-14.2015 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Krabbe disease or globoid cell leukodystrophy is one of the classic genetic lysosomal storage diseases with autosomal recessive inheritance that affects both central and peripheral nervous systems in several species including humans, rhesus macaques, dogs, mice, and sheep. Since its identification in 1916, lots of scientific investigations were made to define the cause, to evaluate the molecular mechanisms of the damage and to develop more efficient therapies inducing clinical benefit and ameliorating the patients' quality of life. This manuscript gives a historical overview and summarizes the new recent findings about Krabbe disease. Human symptoms and phenotypes, gene encoding for β-galactocerebrosidase and encoded protein were described. Indications about the classical mutations were reported and some specific mutations in restricted geographical area, like the north of Catania City (Italy), were added. Briefly, here we present a mix of past and present investigations on Krabbe disease in order to update the knowledge on its genetic history and molecular mechanisms and to move new scientific investigations.
    Gene 09/2014; DOI:10.1016/j.gene.2014.09.046 · 2.08 Impact Factor