Photosynthesis in Pineapple (Ananas comosus comosus [L.] Merr) Measured Using PAM (Pulse Amplitude Modulation) Fluorometry

Tropical Plant Biology 12/2010; 3(4):193-203. DOI: 10.1007/s12042-010-9057-y

ABSTRACT PAM (Pulse Amplitude Modulation) fluorometer techniques directly measure the light reactions of photosynthesis that are otherwise difficult to estimate
in CAM (Crassulacean Acid metabolism) plants such as pineapple (Ananas comosus comosus cv. Phuket). PAM machines calculate photosynthesis as the Electron Transport Rate (ETR) through PSII (4 electrons per O2 produced) as molm−2s−1. P vs. E curves fitted the waiting-in-line function (an equation of the form ETR = ( ETR max E/Eopt ).e1 - E/Eopt {\hbox{ETR}} = \left( {{\hbox{ET}}{{\hbox{R}}_{{ \max }}} \times {\hbox{E}}/{{\hbox{E}}_{\rm{opt}}}} \right).{{\hbox{e}}^{{1} - {\rm{E}}/{\rm{Eopt}}}} ) allowing half-saturating and optimal irradiances (Eopt) to be estimated. Effective Quantum Yield (Ymax), Electron Transport Rate (ETRmax) and the Non-Photochemical Quenching parameter, NPQmax all vary on a diurnal cycle but the parameter qNmax does not show a systematic variation over a diurnal period. Phuket pineapple is a “sun plant” with Optimum Irradiance (Eopt) from 755 to 1,130μmolm−2s−1 (400–700nm) PAR but photosynthetic capacity is very low in the late afternoon even though light conditions are favourable
for rapid photosynthesis. Total CO2 fixed nocturnally as C4-dicarboxylic acids by leaves of the Phuket pineapple was only ≈0.14gC m−2 d−1 (0.012mol C m−2 d−1). Titratable acid of leaves was depleted about 3pm (15:00) and shows a classical CAM diurnal cycle. The Phuket pineapple
variety only stored enough CO2 as C4 acids to account for only about 2.5% of photosynthesis (Pg) estimated using the PAM machine (≈5.6gC m−2 d−1). Phuket pineapples are classifiable as CAM-Cycling plants but nocturnal fixation of CO2 is so low compared to the more familiar Smooth Cayenne variety that it probably recycles only a small proportion of the respiratory
CO2 produced in leaves at night and so even CAM-cycling is only of minor importance to the carbon economy of the plant. Unlike
the Smooth Cayenne pineapple variety, which fixes large amounts of CO2 nocturnally, the Phuket pineapple is for practical purposes a C3 plant.

KeywordsPineapple-Cultivar Phuket-CAM photosynthesis-Carbon fixation-Diurnal cycle-Gross photosynthesis-PAM fluorometry-PAR-Primary productivity

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PAM (pulse amplitude modulation) fluorometers can be used to estimate the electron transport rate (ETR) [μmol(e–) m–2 s–1] from photosynthetic yield determinations, provided the absorptance (Abtλ) of the photoorganism is known. The standard assumed value used for absorptance is 0.84 (leaf absorptance factor, AbtF). We described a reflectance-absorptance-transmittance (RAT) meter for routine experimental measurements of the actual absorptance of leaves. The RAT uses a red-green-blue (RGB) LED diode light source to measure absorptances at wavelengths suitable for use with PAM fluorometers and infrared gas analysers. Results using the RAT were compared to Abtλ spectra using a Taylor integrating sphere on bird’s nest fern (Asplenium nidus), banana, Doryanthes excelsa, Kalanchoe daigremontiana, and sugarcane. Parallel venation had no significant effect upon Abt465 in banana, Doryanthes, a Dendrobium orchid, pineapple, and sugarcane, but there was a slight difference in the case of the fern A. nidus. The average Abt465 (≈ 0.96) and Abt625 (≈ 0.89) were ≈14% and 6% higher than the standard value (AbtF = 0.84). The PAR-range Abt400–700 was only ≈ 5% higher than the standard value (≈ 0.88) based on averaged absorptance from the blue, green, and red light data and from where the RGB-diode was used as a ‘white’ light source. In some species, absorptances at blue and red wavelengths are quite different (e.g. water lily). Reflectance measurements of leaves using the RAT would also be useful for remote sensing studies.
    Photosynthetica 01/2014; 52:614–626. DOI:10.1007/s11099-014-0069-y · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The results of research on the water relations and irrigation need of pineapple are collated and summarised in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the centres of origin (northern South America) and of production (Brazil, Thailand and the Philippines) of pineapple is followed by reviews of crop development, including roots, plant water relations, crop water requirements and water productivity and irrigation systems. The majority of the recent research published in the international literature on these topics has been conducted in the United States (Hawaii) and Brazil. Pineapple differs from most other commercial crops in that it has a photosynthetic adaptation (crassulacean acid metabolism (CAM)) that facilitates the uptake of carbon dioxide at night, and improves its water-use efficiency under dry conditions. The crop is propagated vegetatively. The succulent leaves collect (and store) water in the leaf axils, where it is absorbed by surrounding tissue or by aerial roots. There is little published information on the effects of water deficits on vegetative growth, flowering or fruiting. Water stress can reduce the number of fruitlets and the fruit weight. After harvest, one or two ratoon crops can follow. Roots originate from just behind the stem-growing point, some remaining above ground (aerial roots), others entering the soil, reaching depths of 0.85–1.5 m. Root growth ceases at flowering. The ratoon crop depends on the original (plant crop) root system, including the axillary roots. Stomata are present on the abaxial leaf surfaces at relatively low densities (70–85 mm−2). They are open throughout the night, and close during the day before reopening in mid-afternoon. The degree to which CAM attributes are expressed depends in part on the location (e.g. tropics or subtropics), and possibly the cultivar, with the total amount of carbon fixed during the night varying from <3% to >80%. There are surprisingly few published reports of field measurements of crop water use and water productivity of pineapple. Two reports show evapotranspiration only occurring during the daytime. There is more uncertainty about the actual water use of pineapple, the value of crop coefficient (Kc) and relative rates of water loss (transpiration) and carbon gain (net photosynthesis), during the daytime and at night, under different water regimes. This is surprising given the amount of fundamental research reported on photosynthesis of CAM plants in general. Although pineapple is mainly a rainfed crop, it is widely irrigated. Drip irrigation is successfully used where the water supply is restricted, the cost of labour is high and cultivation techniques are advanced. Micro-jets can also be used, as can any of the overhead sprinkler systems, provided wind distortion is not a problem. There is a lack of reliable published data quantifying where irrigation of pineapple is likely to be worthwhile, how it is best practised and the benefits that can be obtained. This is remarkable considering the importance of pineapple as an internationally traded commodity.
    Experimental Agriculture 10/2012; 48(04). DOI:10.1017/S0014479712000385 · 1.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shallow ponds with rapidly photosynthesising cyanobacteria or eukaryotic algae are used for growing biotechnology feedstock and have been proposed for biofuel production but a credible model to predict the productivity of a column of phytoplankton in such ponds is lacking. Oxygen electrodes and Pulse Amplitude Modulation (PAM) fluorometer technology were used to measure gross photosynthesis (P G) vs. irradiance (E) curves (P G vs. E curves) in Chlorella (chlorophyta), Dunaliella salina (chlorophyta) and Phaeodactylum (bacillariophyta). P G vs. E curves were fitted to the waiting-in-line function [P G = (P Gmax × E/E opt) × exp(1 – E/E opt)]. Attenuation of incident light with depth could then be used to model P G vs. E curves to describe P G vs. depth in pond cultures of uniformly distributed planktonic algae. Respiratory data (by O 2 -electrode) allowed net photosynthesis (P N) of algal ponds to be modelled with depth. Photoinhibition of photosynthesis at the pond surface reduced P N of the water column. Calculated optimum depths for the algal ponds were: Phaeodactylum, 63 mm; Dunaliella, 71 mm and Chlorella, 87 mm. Irradiance at this depth is ≈ 5 to 10 µmol m –2 s –1 photosynthetic photon flux density (PPFD). This knowledge can then be used to optimise the pond depth. The total net P N [µmol(O 2) m –2 s –1 ] were: Chlorella, ≈ 12.6 ± 0.76; Dunaliella, ≈ 6.5 ± 0.41; Phaeodactylum ≈ 6.1 ± 0.35. Snell's and Fresnel's laws were used to correct irradiance for reflection and refraction and thus estimate the time course of P N over the course of a day taking into account respiration during the day and at night. The optimum P N of a pond adjusted to be of optimal depth (0.1–0.5 m) should be approximately constant because increasing the cell density will proportionally reduce the optimum depth of the pond and vice versa. Net photosynthesis for an optimised pond located at the tropic of Cancer would be [in t(C) ha –1 y –1 ]: Chlorella, ≈ 14.1 ± 0.66; Dunaliella, ≈ 5.48 ± 0.39; Phaeodactylum, ≈ 6.58 ± 0.42 but such calculations do not take weather, such as cloud cover, and temperature, into account.
    Photosynthetica 12/2012; 50(4):481-500. DOI:10.1007/s11099-012-0076-9 · 1.01 Impact Factor


Available from
Jun 1, 2014