Article

Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City

Air Quality Atmosphere & Health (Impact Factor: 1.98). 1(2):81-89. DOI: 10.1007/s11869-008-0016-9

ABSTRACT The microbial communities transported by Asian desert dust (KOSA) events have attracted much attention as bioaerosols because
the transported microorganisms are thought to influence the downwind ecosystems in Korea and Japan. We have analyzed bioaerosol
samples collected at 10 and 800m above the ground within the KOSA source area, Dunhuang City, China. The samples were studied
by epifluorescent microscopy, revealing the presence of bacterial cells attached to mineral particles. The microorganisms
in the bioaerosol samples were able to grow in media containing up to 20% NaCl, suggesting that bacteria tolerant to high
salinities remain viable in the atmosphere. Phylogenetic analysis using 16S rDNA sequences revealed that halobacterial communities
in the bioaerosol samples collected at both 10 and 800m above the ground comprised a few bacterial species related to Bacillus pumilus and Staphylococcus spp. The active mixing processes of the boundary layer presumably transports viable halotolerant bacteria into the free atmosphere,
where the long-range atmospheric transport of desert dust is frequently observed.

0 Bookmarks
 · 
145 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidences show that inhalation of indoor bioaerosols has caused numerous adverse health effects and diseases. However, the bioaerosol size distribution, composition, and concentration level, representing different inhalation risks, could vary with different living environments. The six-stage Andersen sampler is designed to simulate the sampling of different human lung regions. Here, the sampler was used in investigating the bioaerosol exposure in six different environments (student dorm, hospital, laboratory, hotel room, dining hall, and outdoor environment) in Beijing. During the sampling, the Andersen sampler was operated for 30 min for each sample, and three independent experiments were performed for each of the environments. The air samples collected onto each of the six stages of the sampler were incubated on agar plates directly at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. In addition, the developed CFUs were washed off the agar plates and subjected to polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Results revealed that for most environments investigated, the culturable bacterial aerosol concentrations were higher than those of culturable fungal aerosols. The culturable bacterial and fungal aerosol fractions, concentration, size distribution, and diversity were shown to vary significantly with the sampling environments. PCR-DGGE analysis indicated that different environments had different culturable bacterial aerosol compositions as revealed by distinct gel band patterns. For most environments tested, larger (>3 μm) culturable bacterial aerosols with a skewed size distribution were shown to prevail, accounting for more than 60 %, while for culturable fungal aerosols with a normal size distribution, those 2.1-4.7 μm dominated, accounting for 20-40 %. Alternaria, Cladosporium, Chaetomium, and Aspergillus were found abundant in most environments studied here. Viable microbial load per unit of particulate matter was also shown to vary significantly with the sampling environments. The results from this study suggested that different environments even with similar levels of total microbial cuturable aerosol concentrations could present different inhalation risks due to different bioaerosol particle size distribution and composition. This work fills literature gaps regarding bioaerosol size and composition-based exposure risks in different human dwellings in contrast to a vast body of total bioaerosol levels.
    Environmental Monitoring and Assessment 09/2012; · 1.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gut microbiota is important in maintaining human health, but numerous factors have the potential to alter its composition. Our aim was to examine the impact of a standard bowel preparation on the intestinal microbiota using two different techniques. Fifteen subjects undergoing colonoscopy consumed a bowel preparation comprised of 10 mg bisacodyl and 2 L polyethylene glycol. The microbiota of stool samples, collected one month before, one week before (pre-colonoscopy), and one week, one month, and three to six months after colonoscopy (post-colonoscopy) was evaluated. Two samples were taken three to six months apart from five healthy subjects who did not undergo colonoscopy. Universal primers targeting the V2-V3 region of the 16S rRNA gene were used to PCR amplify all samples for denaturing gradient gel electrophoresis (PCR-DGGE). Pre- and post-colonoscopy samples were compared using Dice's similarity coefficients. Three samples from ten subjects who underwent colonoscopy, and both samples from the five subjects who didn't, were used for high-throughput sequencing of the V1-V3 region of the 16S rRNA gene. Samples were curated and analysed in Mothur. Results of the DGGE analyses show that the fecal microbiota of a small number of subjects had short-term changes. High-throughput sequencing results indicated that the variation between the samples of subjects who underwent colonoscopy was no greater than the variation observed between samples from subjects who did not. We conclude that bowel preparation does not have a lasting effect on the composition of the intestinal microbiota for the majority of subjects.
    PLoS ONE 01/2013; 8(5):e62815. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7 km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94 × 10(-5) ng DNA m(-3) for bacteria and 4.77 × 10(-3) ng DNA m(-3) for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4 % of bacterial and 47.6 % of fungal samples (N = 124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22-23 April 2011 and 13-15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10 days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.
    Microbial Ecology 07/2012; 64(4):973-85. · 3.28 Impact Factor

Full-text

View
0 Downloads
Available from