Chapter

Plant Effects on Soils in Drylands: Implications for Community Dynamics and Ecosystem Restoration

DOI: 10.1007/1-4020-3447-4_6
0 Bookmarks
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological soil crusts (BSC) play a major role in water and nutrient fluxes in semi-arid and arid areas, affecting the establishment of vascular plants and contributing to the spatial arrangement of vegetated and open areas. However, little is known regarding their effects on the performance of extant vegetation. By using experimental manipulations (surface soil cutting and herbiciding), we evaluated the effect of the physical structure and the biotic component of smooth biological soil crusts on soil moisture dynamics, and on the nutrient and water status, growth rate, and reproductive effort of Stipa tenacissima tussocks in a semi-arid steppe. Soil moisture content was weakly reduced after cutting the soil surface and was not affected by herbicide application. Cutting and herbiciding the biological soil crust had no effect on most morpho-functional and reproductive traits measured in S. tenacissima tussocks. The integrated water use efficiency of this species, as measured by 13C natural enrichment, decreased when the biotic community of biological soil crusts was killed with herbicide. In the S. tenacissima steppe studied, killing the BSC and breaking the continuity of the structural crust had a weak effect on the short-term performance of this species, but our results suggest that BSC exert a control on slope hydrology beyond that provided by physical soil crusts. KeywordsCyanobacteria-Disturbance-Runoff-Soil moisture-Source-sink dynamics-Spatial heterogeneity
    Plant and Soil 01/2010; 334(1):311-322. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of species coexistence and community assembly has been a hot topic in ecology for decades. Disentangling the hierarchical role of abiotic and biotic filters is crucial to understand community assembly processes. The most critical environmental factor in semi-arid environments is known to be water availability, and perennials are usually described as nurses that create milder local conditions and expand the niche range of several species. We aimed to broaden this view by jointly evaluating how biological soil crusts (BSCs), water availability, perennial species (presence/absence of Stipa tenacissima) and plant-plant interactions shape a semi-arid annual plant community. The presence and cover of annual species was monitored during three years of contrasting climate. Water stress acted as the primary filter determining the species pool available for plant community assembly. Stipa and BSCs acted as secondary filters by modulating the effects of water availability. At extremely harsh environmental conditions, Stipa exerted a negative effect on the annual plant community, while at more benign conditions it increased annual community richness. Biological soil crusts exerted a contradictory effect depending on climate and on the presence of Stipa, favoring annuals in the most adverse conditions but showing repulsion at higher water availability conditions. Finally, interactions among co-occurring annuals shaped species richness and diversity of the final annual plant assembly. This study sheds light on the processes determining the assembly of annual communities and highlights the importance of Biological Soil Crusts and of interactions among annual plants on the final outcome of the species assembly.
    PLoS ONE 01/2012; 7(7):e41270. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The stress-gradient hypothesis (SGH) predicts that the frequency of facilitative and competitive interactions will vary inversely across abiotic stress gradients, with facilitation being more common in conditions of high abiotic stress relative to more benign abiotic conditions. With notable exceptions, most tests of the SGH have studied the interaction between a single pair or a few pairs of species, and thus have evaluated shifts in the magnitude and direction of pair-wise interactions along stress gradients, rather than shifts in the general frequency of interactions. 2. The SGH has been supported by numerous studies in many ecosystems, has provided a crucial foundation for studying the interplay between facilitation and competition in plant communities, and has a high heuristic value. However, recent empirical research indicates that factors like the variation among species and the nature of the stress gradient studied add complexity not considered in the SGH, creating an opportunity to extend the SGH's general conceptual framework. 3. We suggest that one approach for extending the SGH framework is to differentiate between the original idea of how 'common' interactions might be along stress gradients and the ubiquitous empirical approach of studying shifts in the strength of pair-wise interactions. Furthermore, by explicitly considering the life history of the interacting species (relative tolerance to stress vs. competitive ability) and the characteristics of the stress factor (resource vs. non-resource) we may be able to greatly refine specific predictions relevant to the SGH. 4. We propose that the general pattern predicted by the SGH would hold more frequently for some combinations of life histories and stress factor, particularly when the benefactor and beneficiary species are mostly competitive and stress-tolerant, respectively. However, we also predict that other combinations are likely to yield different results. For example, the effect of neighbours can be negative at both ends of the stress gradient when both interacting species have similar 'competitive' or 'stress-tolerant' life histories and the abiotic stress gradient is driven by a resource (e.g. water). 5. Synthesis. The extension of the SGH presented here provides specific and testable hypotheses to foster research and helps to reconcile potential discrepancies among previous studies. It represents an important step in incorporating the complexity and species-specificity of potential outcomes into models and theories addressing how plant–plant interactions change along stress gradients.
    Clinical and Experimental Allergy 01/2009; 97:199-205. · 5.43 Impact Factor

Full-text

View
159 Downloads
Available from
Jun 2, 2014