Article

Genetic variability and association studies in pod and seed traits of Pongamia pinnata (L.) Pierre in Haryana, India

Genetic Resources and Crop Evolution (Impact Factor: 1.59). 54(8):1827-1832. DOI: 10.1007/s10722-006-9204-3

ABSTRACT Forty Candidate Plus Trees (CPTs) of Pongamia pinnata were selected based on the morphometric traits to identify suitable seed sources with high oil content and for production
of quality seedlings for mass afforestation in different forestry and agroforestry programmes. Significant genetic variability
and association were recorded among 40CPTs for pod and seed traits. Maximum 100-seed weight (186.80g) and pod-weight (403.94g)
was recorded in CPT-33, while CPT-18 showed maximum oil content (44.07%). In general, phenotypic coefficient of variation
was higher than genotypic coefficient of variation indicating the predominant role of environment. High heritability (broad
sense) and genetic gain observed for pod–seed ratio (99.00%, 87.78%), 100-seed weight (100.00%, 66.99%) and 100-pod weight
(98.00%, 57.38%), respectively indicate additive gene action. Seed weight and pod weight showed positive and significant correlation
with oil content. CPTs 18, 20, 33, 13 and 29 were found to be the best on the basis of oil content and pod–seed characters.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biochemical characteristics of 24 Pongamia pinnata genotypes (candidate plus trees) from three agroclimatic zones were estimated and molecular characterization through RAPD markers was done. Various biochemical characters viz. seed oil, total carbohydrates, protein, acid value and Iodine number recorded significant variation among different genotypes. The highest seed oil content was 41.87% while seeds of 14 genotypes recorded above average (32.11%) for the trait. Seed oil and protein content exhibited a significant positive correlation and moderate heritability. Out of the initially selected twenty-five random primers, twenty-two RAPD primers were found to be highly reproducible and produced a total of 183 loci of which 147 (80.32%) loci were polymorphic. Percentage of polymorphism varied from 44% to 100% with an average of 80.62%. High level of genetic variation was found among different genotypes of P. pinnata. Both molecular and oil content (biochemical) markers appeared useful in analyzing the extent of genetic diversity in Pongamia and the result of these analyses will help to better understand the genetic diversity and relationship among populations. Overall, the Pongamia genotypes included in the study showed a correlation with their geographical origins such that genotypes from the same region tend to have higher genetic similarity as compared to those from different regions. However, in UPGMA based Nei's analysis, some genotypes were found not to be grouped based on geographical origins possibly due to the exchange of germplasm over time between farmers across the regions. The results from oil content analyses showed that several genotypes in 'Central and Western Plateau' agroclimatic zone of Jharkhand displayed a good potential for high oil content. The study provides insight about P. pinnata populations in Jharkhand (India) and constitutes a set of useful background information that can be used as a basis for future breeding strategy and improvement of the species.
    Journal of Forest Science 01/2013; 29293:2287-2396.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficacy of two dominant molecular markers, namely, amplified fragment length polymorphism (AFLP) and three endonuclease (TE)-AFLP, were assessed in 20 individuals of the biodiesel species Pongamia pinnata. Four primer combinations generated a total of 254 and 194 bands in AFLP and TE-AFLP, respectively. Both techniques could unequivocally identify each accession used in this study. The Jaccard’s similarity coefficient ranged from 0.30 to 0.90 for AFLP and from 0.25 to 0.85 for TE-AFLP. The correlation coefficient between AFLP and TE-AFLP dendrogram was 0.56 which was low but significant (P < 0.001). Values of effective multiplex ratio, marker index, and resolving power were markedly higher in AFLP than in TE-AFLP. However, the band intensities across different lanes were uniform in TE-AFLP leading to easy and accurate scoring of gels which resulted in slightly higher bootstrap values with TE-AFLP data as compared to AFLP data. Inferences based on TE-AFLP data had similar level of biological relevance as compared to AFLP data when location and diameter of trees were taken in to consideration. However, the easy scorability of TE-AFLP profiles is extremely important and especially desirable in studies requiring genotyping of large number of individuals distributed across many gels. Keywords Pongamia pinnata –TE-AFLP–Polymorphic information content (PIC)–Resolving power–Genetic diversity
    Plant Molecular Biology Reporter 01/2011; 29(1):12-18. · 5.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A total of 24 candidate plus trees (CPTs) of Pongamia pinnata (L.) Pierre. were selected to elucidate their variation and diversity based on thirteen quantitative traits (4 pod traits, 6 seed traits of parent trees and 3 progeny traits) at Forest Research Centre, Institute of Forest Productivity — Mandar, Ranchi district during 2005–2007. The results show that, CPT-19 had maximum for seven traits viz, pod length (65.6 mm), 100-pod weight (542.4 g), seed 2D (two dimension) area (351.2 mm2), seed length (27.9 mm), seed breadth (17.4 mm), 100-seed weight (217.9 g) and plant height (164.3 cm). The traits, 100-pod weight and 100-seed weight had a high heritability (98.4%, 96.9%) accompanied with high genetic advance (46.0%, 34.9%). There is a positive significant correlation between 100-pod weight and 100-seed weight traits at both genotypic and phenotypic levels with plant height, collar diameter and volume index at 30 MAS (months after sowing). Volume index expressed a moderate heritability (47.4%) accompanied with high genetic advance (48.4%), indicating that the character is governed by additive gene effects. In divergence study, 24 accessions were grouped into 6 clusters on the basis of non-hierarchical euclidian cluster analysis. The genotypes in cluster IV (CPT-5, CPT-6, CPT-7, CPT-12, CPT-16, CPT-18, CPT-22) and cluster III (CPT-4, CPT-8, CPT-9, CPT-20, CPT-21) were most heterogeneous and can be best used within group hybridization. The wide diversity exists between the cluster V and II, followed by cluster II and I and crosses between CPTs of these clusters may result in substantial segregates. It is revealed that the existence of substantial variation and diversity can be utilized for genetic resource conservation and further tree improvement programmers of the species. Keywords Pongamia pinnata –heritability–genetic advance–correlation–path analysis–image analyzer–diversity analysis
    Journal of Forestry Research 01/2011; 22(2):193-200.