Speciation of arsenic compounds by coupling high-performance liquid chromatography with inductively coupled plasma mass spectrometry

Microchimica Acta (Impact Factor: 3.43). 02/1998; 130(1):71-79. DOI: 10.1007/BF01254593

ABSTRACT There is considerable evidence that toxicity and physiological behavior of arsenic depends on its chemical forms. Arsenic speciation became therefore the subject of increasing interest in recent years. A sensitive method for the determination of arsenic species has been developed. The proposed procedure involves the use of high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Six arsenic compounds were separated by anion-exchange chromatography with isocratic elution using tartaric acid as mobile phase with an elution order: arsenocholine, arsenobetaine, dimethylarsinic acid, methylarsonic acid, arsenous acid and arsenic acid. The chromatographic parameters affecting the separation of the arsenic species were optimized. Analytical characterization of the method has been realized with standard solutions. The detection limits for six arsenic compounds were from 0.04 to 0.6 g/L as As element. The repeatability (expressed by R.S.D) was better than 7% for all investigated compounds. The HPLC-ICP-MS system was successfully applied to the determination of arsenic compounds in environmental and biological samples in g/L level.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stability of chemical speciation during sample handling and storage is a prerequisite to obtaining reliable results of trace element speciation analysis. There is no comprehensive information on the stability of common arsenic species, such as inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine, in human urine. We compared the effects of the following storage conditions on the stability of these arsenic species: temperature (25, 4, and -20 degrees C), storage time (1, 2, 4, and 8 months), and the use of additives (HCl, sodium azide, benzoic acid, benzyltrimethylammonium chloride, and cetylpyridinium chloride). HPLC with both inductively coupled plasma mass spectrometry and hydride generation atomic fluorescence detection techniques were used for the speciation of arsenic. We found that all five of the arsenic species were stable for up to 2 months when urine samples were stored at 4 and -20 degrees C without any additives. For longer period of storage (4 and 8 months), the stability of arsenic species was dependent on urine matrices. Whereas the arsenic speciation in some urine samples was stable for the entire 8 months at both 4 and -20 degrees C, other urine samples stored under identical conditions showed substantial changes in the concentration of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid. The use of additives did not improve the stability of arsenic speciation in urine. The addition of 0.1 mol/L HCl (final concentration) to urine samples produced relative changes in inorganic As(III) and As(V) concentrations. Low temperature (4 and -20 degrees C) conditions are suitable for the storage of urine samples for up to 2 months. Untreated samples maintain their concentration of arsenic species, and additives have no particular benefit. Strong acidification is not appropriate for speciation analysis.
    Clinical Chemistry 12/1999; 45(11):1988-97. · 7.15 Impact Factor