Stabilization of a truncated Bacillus sp. strain TS-23 α-amylase by replacing histidine-436 with aspartate

World Journal of Microbiology and Biotechnology (Impact Factor: 1.78). 05/2005; 21(4):411-416. DOI: 10.1007/s11274-004-1764-9


Histidine-436 of a truncated Bacillus sp. strain TS-23 α-amylase (His6-tagged ΔNC) has been known to be responsible for thermostability of the enzyme. To understand further the structural role of this residue, site-directed mutagenesis was conducted to replace His-436 of His6-tagged ΔNC with aspartate, lysine, tyrosine or threonine. Starch-plate assay showed that all Escherichia coli M15 transformants conferring the mutated amylase genes retained the amylolytic activity. The over-expressed proteins have been purified to near homogeneity by nickel-chelate chromatography and the molecular mass of the purified enzymes was approximately 54kDa. The specific activity for H436T was decreased by more than 56%, while H436D, H436K, and H436Y showed a higher activity to that of the wild-type enzyme. Although the mutations did not lead to a significant change in the Km value, more than 66% increase in the value of catalytic efficiency (kcat/Km) was observed in H436D, H436K, and H436Y. At 70C, H436D exhibited an increased half-life with respect to the wild-type enzyme.

39 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: One deletion mutant was constructed from the structural gene of a truncated Bacillus sp. strain TS-23 α-amylase (BACΔNC) by site-directed mutagenesis. BACΔNC and BACΔNC/ΔR210-S211 were overexpressed in recombinant Escherichia coli M15 cells and purified to nearly homologous by nickel-chelate chromatography. BACΔNC and BACΔNC/ΔR210-S211 were very similar with respect to specific activity, kinetic parameters, pH–activity profile, and temperature–activity curve. An increased half-life at 70 °C was observed for BACΔNC/ΔR210-S211, suggesting that Arg210-Ser211 deletion leads to a conformational change of the enzyme. Tryptophan emission fluorescence and circular dichroism spectra were nearly identical for the wild-type enzyme and BACΔNC/ΔR210-S211, but they showed a different sensitivity towards temperature-induced denaturation. These results indicated that the rigidity of the enzyme has been altered by Arg210-Ser211 deletion.
    PROCESS BIOCHEMISTRY 05/2008; 43(5-43):559-565. DOI:10.1016/j.procbio.2008.01.020 · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The functional and structural significance of glutamic acid 219 of a N- and C-terminally truncated Bacillus sp. strain TS-23 α-amylase (BACΔNC) was explored by the approach of site-directed saturation mutagenesis. The expressed wild-type and mutant enzymes have been purified by nickel-chelate chromatography and their molecular mass was determined to be approximately 54 kDa by SDS/PAGE. Except E219F, E219P, and E219W, all other mutant enzymes exhibited a lower shift in their optimum temperatures with respect to the wild-type enzyme. A decreased thermostability was also found in all of the mutant enzymes when compared with the wild-type form of BACΔNC. Except E219F, E219P, and E219W mutant enzymes, greater than 2-fold decrease in k cat and a similar substrate affinity relative to the wild-type BACΔNC were observed for the rest mutant enzymes. Based on these observations, it is suggested that Glu-219 apparently plays an important role in the thermostability of BACΔNC.
    World Journal of Microbiology and Biotechnology 05/2008; 24(5):619-626. DOI:10.1007/s11274-007-9518-0 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins of both hyperthermophilic and mesophilic microorganisms generally constitute from the same 20 amino acids; however, the extent of thermal tolerance of any given protein is an inherent property of its amino acid sequence. The present study is the first to report a rapid method for predicting Tm (melting temperature), the temperature at which 50% of the protein is unfolded, directly from protein sequences (the Tm Index program is available at We examined 75 complete microbial genomes using the Tm Index, and the analysis clearly differentiated hyperthermophilic from mesophilic microorganisms on this global genomic basis. These results are consistent with the previous hypothesis that hyperthermophiles express a greater number of high Tm proteins compared with mesophiles. The Tm Index will be valuable for modifying existing proteins (enzymes, protein drugs and vaccines) or designing novel proteins having a desired melting temperature.
    Computational biology and chemistry 10/2009; 33(6):445-50. DOI:10.1016/j.compbiolchem.2009.10.002 · 1.12 Impact Factor
Show more