Fang CX, He HB, Wang QS, Qiu L, Wang HB, Zhuang YE, Xiong J, Lin WX Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regul

Agroecological Institute/School of Life Sciences, Fujian Agriculture and Forestry University (FAFU), 350002 Fuzhou, People’s Republic of China
Plant Growth Regulation (Impact Factor: 1.67). 07/2010; 61(3):277-286. DOI: 10.1007/s10725-010-9475-8


To explore the molecular mechanism of allelopathic rice in response to low nitrogen (N) supply or accompanying weed stress,
allelopathic rice PI 312777 and its counterpart Lemont were grown under low N supply or co-cultured with barnyardgrass [Echinochloa crus-galli (L.) Beauv.] in hydroponics. The suppression subtractive hybridization (SSH) technique was employed to isolate the up-regulated
genes in the treated rice accession. The results indicated that the expression of the genes associated with N utilization
was significantly up-regulated in allelopathic rice PI 312777, and the higher efficiency of N uptake and its utilization were
also detected in PI 312777 than that in Lemont when the two rice accessions were exposed to low N supply. This result suggested
that the allelopathic rice had higher ability to adapt to low N stress than its non-allelopathic counterpart. However, a different
response was observed when the allelopathic rice was exposed to accompanying weed (barnyardgrass) co-cultured in full Hoagland
solution (normal N supply). It showed that the expression of the genes associated with allelochemical synthesis and its detoxification
were all up-regulated in the allelopathic rice when co-cultured with the target weed under normal N supply. The results suggested
that the allelopathic rice should be a better competitor in the rice-weed co-culture system, which could be attributed to
increasing de novo biosynthesis and detoxification of allelochemicals in rice, consequently resulting in enhanced allelopathic
effect on the target and preventing the autotoxicity in this process. These findings suggested that the accompanying weed,
barnyardgrass is not only the stressful factor, but also one of the triggers in activating allelopathy in rice. This implies
that the allelopathic rice is sensible of the existing target in chemical communication.

KeywordsAllelopathy-Barnyardgrass-Gene expression-Low nitrogen-Plant defense-Rice

1 Follower
29 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proline is one of the most important osmoregulatory solutes subjected to osmotic stresses. In this study, low nitrogen supply suppressed the dry biomass, leaf area, and proline biosynthesis of the seedlings of the energy plant Jatropha curcas, which could grow in poor, dry soil. Low-nitrogen stress induced JcP5CS mRNA expression and decreased the activity of P5CS enzyme and the content of free proline in leaves of J. curcas seedlings. When the seedlings grown in low-nitrogen conditions were suddenly exposed to PEG-6000 (−1.6MPa) stress, the expression of JcP5CS gene was highly induced, and both the activity of P5CS and the content of free proline increased and maintained at high levels to mitigate the impact of drought stresses. This may be one of the reasons why J. curcas could adapt to poor and drought conditions. KeywordsLow nitrogen supply–Proline–Drought stress–P5CS– Jatropha curcas
    Acta Physiologiae Plantarum 09/2011; 33(5):1591-1595. DOI:10.1007/s11738-010-0692-6 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant-plant interference is the combined effect of allelopathy, resource competition, and many other factors. Separating allelopathy from resource competition is almost impossible in natural systems but it is important to evaluate the relative contribution of each of the two mechanisms on plant interference. Research on allelopathy in natural and cultivated plant communities has been hindered in the absence of a reliable method that can separate allelopathic effect from resource competition. In this paper, the interactions between allelopathic rice accession PI312777, non-allelopathic rice accession Lemont and barnyardgrass were explored respectively by using a target (rice)-neighbor (barnyardgrass) mixed-culture in hydroponic system. The relative competitive intensity (RCI), the relative neighbor effect (RNE) and the competitive ratio (CR) were used to quantify the intensity of competition between each of the two different potentially allelopathic rice accessions and barnyardgrass. Use of hydroponic culture system enabled us to exclude any uncontrolled factors that might operate in the soil and we were able to separate allelopathy from resource competition between each rice accession and barnyardgrass. The RCI and RNE values showed that the plant-plant interaction was positive (facilitation) for PI312777 but that was negative (competition) for Lemont and barnyardgrass in rice/barnyardgrass mixed-cultures. The CR values showed that one PI312777 plant was more competitive than 2 barnyardgrass plants. The allelopathic effects of PI312777 were much more intense than the resource competition in rice/barnyardgrass mixed cultures. The reverse was true for Lemont. These results demonstrate that the allelopathic effect of PI312777 was predominant in rice/barnyardgrass mixed-cultures. The most significant result of our study is the discovery of an experimental design, target-neighbor mixed-culture in combination with competition indices, can successfully separate allelopathic effects from competition.
    PLoS ONE 05/2012; 7(5):e37201. DOI:10.1371/journal.pone.0037201 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allelopathic rice cultivar PI312777 (PI) and non-allelopathic rice cultivar Lemont (Le) were mixed with barnyard grass (Echinochloa crus-galli L., BYG) at various ratios (rice:weed ratios of 4:1, 2:1, and 1:1) in hydroponic cultures. The expression of four genes, i.e. phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), ferulic acid 5-hydroxylase (F5H), and caffeic acid O-methyltransferases (COMT), which are involved in the biosynthesis of the phenolic compounds in rice, were evaluated by a quantitative real-time polymerase chain reaction (qRT-PCR). The contents of phenolic compounds in leaves, roots, and culture solutions of the two rice cultivars were determined using high performance liquid chromatography (HPLC). The results showed that all of the four genes were up-regulated in leaves and roots of the allelopathic rice PI at all rice:weed ratios. However, three of the four genes, C4H, F5H, and COMT, were down-regulated in the leaves and roots of the non-allelopathic rice Le. The degree to which PAL was up-regulated in leaves and roots was much higher in PI than in Le. The contents of phenolic compounds in PI leaves, roots, and culture solutions were higher than that in Le leaves, roots, and culture solutions. The higher expression of the genes involved in the phenylpropanoid metabolism and the higher contents of phenolic compounds in PI are consistent with the higher inhibitory rates of PI on BYG. These results indicate that the PAL gene in PI is more sensitive to BYG stress than in Le, and barnyard grass up regulates the biosynthesis of phenolic compound in allelopathic rice.
    Journal of plant physiology 08/2012; 169(17). DOI:10.1016/j.jplph.2012.06.018 · 2.56 Impact Factor
Show more