Article

GC/MS-based urinary metabolomics reveals systematic differences in metabolism and ethanol response between Sprague–Dawley and Wistar rats

Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
Metabolomics (Impact Factor: 3.97). 09/2011; 7(3):363-374. DOI: 10.1007/s11306-010-0252-5

ABSTRACT Metabolic differences of experimental animals contribute to pharmacological variations. Sprague–Dawley (SD) and Wistar rats
are commonly used experimental rats with similar genetic background, and considered interchangeable in practical researches.
In this study, we present the urinary metabolomics results, based on gas chromatography coupled to mass spectrometry (GC/MS),
which reveal the systematic metabolic differences between SD and Wistar rats under different perturbations such as fasting,
feeding, and consecutive acute ethanol interventions. The different metabotypes between the two strains of rats involve a
number of metabolic pathways and symbiotic gut microflora. SD rats exhibited higher individualized metabolic variations in
the fasting and feeding states, and a stronger ability to recover from an altered metabolic profile with less hepatic injury
from the consecutive ethanol exposure, as compared to Wistar rats. In summary, the GC/MS-based urinary metabolomics studies
demonstrated an intrinsic metabolic difference between SD and Wistar rats, which warrants consideration in experimental design
using these animal strains.

KeywordsMetabolomics–Systematic difference–Sprague–Dawley rats–Wistar rats–Ethanol intervention–GC/MS

0 Bookmarks
 · 
177 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Mediterranean diet (MD) is considered a dietary pattern with beneficial effects on human health. The aim of this study was to assess the effect of an MD on urinary metabolome by comparing subjects at 1 and 3 years of follow-up, after an MD supplemented with either extra-virgin olive oil (MD+EVOO) or nuts (MD+Nuts), to those on advice to follow a control low-fat diet (LFD). Ninety-eight non-diabetic volunteers were evaluated, using metabolomic approaches, corresponding to MD+EVOO (n=41), MD+Nuts (n=27) or LFD (n=30) groups. The 1H-NMR urinary profiles were examined at baseline, after 1 and 3 years of follow-up. Multivariate data analysis (OSC-PLS-DA and HCA) methods were used to identify the potential biomarker discriminating groups, exhibiting a urinary metabolome separation between MD groups against baseline and LFD. Results revealed that the most prominent hallmarks concerning MD groups were related to the metabolism of carbohydrates (3-hydroxybutyrate, citrate, cis-aconitate), creatine, creatinine, amino acids (proline, N-acetylglutamine, glycine, branched-chain amino acids and derived metabolites), lipids(oleic and suberic acids), and microbial co-metabolites (phenylacetylglutamine, p-cresol). Otherwise, hippurate, trimethylamine-N-oxide, histidine and derivates (methylhistidines, carnosine, anserine) and xanthosine were predominant after LFD. The application of NMR-based metabolomics enabled the classification of individuals regarding their dietary pattern and highlights the potential of this approach for evaluating changes in the urinary metabolome at different time points of follow-up in response to specific dietary interventions.
    Journal of Proteome Research 10/2014; 14(1). DOI:10.1021/pr5007894 · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic ethanol consumption is associated with not only the alteration of metabolic profiles in biofluids but also the composition of the gut microbiome. Our understanding of the importance of the intestinal microbiota as well as the disturbances elicited by ethanol intervention is limited by the fact that previous analyses have primarily focused on biofluids and liver tissue metabolome; the metabolic profiles of the gastrointestinal (GI) contents are rarely investigated. In this study, we applied a metabonomics approach using a high performance liquid chromatography-time-of-flight mass spectrometry (HPLC-TOF MS) and gas chromatography-mass spectrometry (GC-MS) to characterize the metabolic alterations of the contents within the GI tract (stomach, duodenum, jejunum, ileum, cecum, colon, and rectum) in male Sprague-Dawley rats following 8 weeks of ethanol exposure. We obtained a snapshot of the distinct changes of the intestinal content metabolite composition in rats with ethanol exposure, which indicated a profound impact of ethanol consumption on the intestinal metabolome. Many metabolic pathways that are critical for host physiology were affected, including markedly altered bile acids, increased fatty acids and steroids, decreased carnitines and metabolites involved in lipid metabolism, a significant decrease of all amino acids and branched chain amino acids, and significantly decreased short chain fatty acids except for acetic acid, which rapidly elevated as a product of ethanol metabolism. These results provide an improved understanding of the systemic alteration of intestinal content metabolites in mammals and the interplay between the host and its complex resident microbiota and may aid in the design of new therapeutic strategies that target these interactions.
    Journal of Proteome Research 06/2013; 12(7). DOI:10.1021/pr400362z · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to evaluate the effect of an oral administration of marine collagen peptides (MCPs) pre- and post-acute ethanol intoxication in female Sprague-Dawley (SD) rats. MCPs were orally administered to rats at doses of 0 g per kg bw, 2.25 g per kg bw, 4.5 g per kg bw and 9.0 g per kg bw, prior to or after the oral administration of ethanol. Thirty minutes after ethanol treatment, the effect of MCPs on motor incoordination and hypnosis induced by ethanol were investigated using a screen test, fixed speed rotarod test (5 g per kg bw ethanol) and loss of righting reflex (7 g per kg bw ethanol). In addition, the blood ethanol concentrations at 30, 60, 90, and 120 minutes after ethanol administration (5 g per kg bw ethanol) were measured. The results of the screen test and fixed speed rotarod test suggested that treatment with MCPs at 4.5 g per kg bw and 9.0 g per kg bw prior to ethanol could attenuate ethanol-induced loss of motor coordination. Moreover, MCP administered both pre- and post-ethanol treatment had significant potency to alleviate the acute ethanol induced hypnotic states in the loss of righting reflex test. At 30, 60, 90 and 120 minutes after ethanol ingestion at 5 g per kg bw, the blood ethanol concentration (BEC) of control rats significantly increased compared with that in the 4.5 g per kg bw and 9.0 g per kg bw MCP pre-treated groups. However, post-treatment with MCPs did not exert a significant inhibitory effect on the BEC of the post-treated groups until 120 minutes after ethanol administration. Therefore, the anti-inebriation effect of MCPs was verified in SD rats with the possible mechanisms related to inhibiting ethanol absorption and facilitating ethanol metabolism. Moreover, the efficiency was better when MCPs were administered prior to ethanol.
    Food & Function 07/2014; 5(9). DOI:10.1039/c4fo00161c · 2.91 Impact Factor

Full-text

Download
141 Downloads
Available from
May 27, 2014