Article

The Influence of Liposomal Encapsulation on Sodium Cromoglycate Pharmacokinetics in Man

University of London; University of Wales College of Cardiff; Fisons plc
Pharmaceutical Research (Impact Factor: 4.74). 06/1989; 6(7):633-636. DOI: 10.1023/A:1015917918130

ABSTRACT The pharmacokinetics of pulmonary-administered sodium cromoglycate (SCG) has been studied in five healthy volunteers. SCG, 20 mg, was inhaled as a solution and encapsulated in dipalmitoyl phosphatidylcholine/cholesterol (1:1) liposomes. Liposomal SCG produced detectable drug levels in plasma from four volunteers taken 24 and 25 hr after inhalation. Inhaled SCG solution, although producing peak plasma levels more than sevenfold greater than liposomal drug, was not detectable in 24-hr samples from any volunteer. The decline in plasma levels following inhalation of liposomal SCG (reflecting the absorption phase) was best described by a biexponential equation. The two absorption rate constants differed by more than an order of magnitude. The rapid absorption phase was probably due to free or surface-adsorbed SCG in the liposomal formulation, since the absorption rate constant for this phase did not differ significantly from the absorption rate constant for SCG in solution. The phase of slow drug absorption may then be attributed to absorption of drug released from vesicles. The data indicate that encapsulation of SCG prior to pulmonary administration prolonged drug retention within the lungs and altered its pharmacokinetics.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the inhalation of a liposomal formulation of amikacin in healthy male volunteers in terms of pulmonary deposition, clearance, and safety following nebulization with a commercial jet nebulizer. Amikacin was encapsulated in liposomes comprised of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol via a proprietary manufacturing process (20 mg/mL final amikacin concentration). The liposomes were radiolabeled with (99m)Tc using the tin chloride labeling method. A nominal dose of 120 mg of drug product was loaded into a PARI LC STAR nebulizer, aerosolized using a PARI Boy compressor where subjects inhaled for 20 min. Lung deposition was determined by gamma scintigraphy in three healthy male volunteers at the following time points (0, 1, 3, 6, 12, 24, 48, and 72 h post-administration). Total lung deposition, expressed as a percentage of the emitted dose, was 32.3 +/- 3.4%. The time-dependent retention of radiolabeled liposomes was biphasic with an initial rapid reduction in counts, followed by a slower phase to 48 h. The overall mean retention at 24 and 48 h was 60.4 and 38.3% of the initial dose deposited, respectively. The observed clearance of radiolabel is consistent with clearance of amikacin following aerosol delivery to rats. There were no clinically significant changes in laboratory parameters, vital signs, or ECG. No adverse events including cough or bronchospasm were reported. Inhalation of a single nominal dose of 120 mg liposomal amikacin results in prolonged retention of drug-loaded liposomes in the lungs of healthy volunteers. The treatment was well tolerated.
    Journal of Aerosol Medicine and Pulmonary Drug Delivery 07/2009; 22(2):131-8. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multilamellar and oligolamellar liposomes were produced from ethanol-based soya phosphatidyl-choline proliposome formulations by addition of isotonic sodium chloride or sucrose solutions. The resultant liposomes entrapped up to 62% of available salbutamol sulfate compared with only 1.23% entrapped by conventionally prepared liposomes. Formulations were aerosolized using an air-jet nebulizer (Pari LC Plus) or a vibrating-mesh nebulizer (Aeroneb Pro small mesh, Aeroneb Pro large mesh, or Omron NE U22). All vibrating-mesh nebulizers produced aerosol droplets having larger volume median diameter (VMD) and narrower size distribution than the air-jet nebulizer. The choice of liposome dispersion medium had little effect on the performance of the Pari nebulizer. However, for the Aeroneb Pro small mesh and Omron NE U22, the use of sucrose solution tended to increase droplet VMD, and reduce aerosol mass and phospholipid outputs from the nebulizers. For the Aeroneb Pro large mesh, sucrose solution increased the VMD of nebulized droplets, increased phospholipid output and produced no effect on aerosol mass output. The Omron NE U22 nebulizer produced the highest mass output (approx. 100%) regardless of formulation, and the delivery rates were much higher for the NaCl-dispersed liposomes compared with sucrose-dispersed formulation. Nebulization produced considerable loss of entrapped drug from liposomes and this was accompanied by vesicle size reduction. Drug loss tended to be less for the vibrating-mesh nebulizers than the jet nebulizer. The large aperture size mesh (8 mum) Aeroneb Pro nebulizer increased the proportion of entrapped drug delivered to the lower stage of a twin impinger. This study has demonstrated that liposomes generated from proliposome formulations can be aerosolized in small droplets using air-jet or vibrating-mesh nebulizers. In contrast to the jet nebulizer, the performance of the vibrating-mesh nebulizers was greatly dependent on formulation. The high phospholipid output produced by the nebulizers employed suggests that both air-jet and vibrating-mesh nebulization may provide the potential of delivering liposome-entrapped or solubilized hydrophobic drugs to the airways.
    Journal of Pharmacy and Pharmacology 08/2006; 58(7):887-94. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary administration of fentanyl solution can provide satisfactory but brief postoperative pain relief. Liposomes are microscopic phospholipid vesicles that can entrap drug molecules. Liposomal delivery of fentanyl has the potential to control the uptake of fentanyl by the lungs and thus provide sustained drug release. To demonstrate that inhalation of a mixture of free and liposome-encapsulated fentanyl can provide a rapid increase and sustained plasma fentanyl concentrations (CfenS), this study determined the pharmacokinetic profiles after the inhalation of free and liposome-encapsulated fentanyl in healthy volunteers. After obtaining institutional approval and informed consent, ten healthy volunteers (five men, five women) were studied. Each subject received 200 micrograms intravenous fentanyl and inhaled 2,000 micrograms of free (50%) and liposome-encapsulated fentanyl (50%) on separate occasions. Frequent venous blood samples were collected, and CfenS were determined by radioimmunoassay. The pharmacokinetics and absorption characteristics of the inhaled mixture of free and liposome-encapsulated fentanyl were determined using moment analysis and least-squares numeric deconvolution. The mean (+/- SD) volume of distribution at steady-state and clearance of fentanyl after the intravenous administration were comparable to previous studies: 435 +/- 1821 and 0.584 +/- 0.209 l.min-1, respectively. The mean (+/- SD) peak Cfen was significantly greater for the intravenous administration compared to the aerosol mixture of free and liposome-encapsulated fentanyl (4.67 +/- 1.87 vs. 1.15 +/- 0.36 ng.ml-1). However, CfenS at 8 and 24 h after aerosol administration were greater compared to intravenous (0.25 +/- 0.14 and 0.12 +/- 0.16 ng.ml-1 for aerosol versus 0.16 +/- 0.10 and 0.05 +/- 0.06 ng.ml-1 for intravenous). The peak absorption rate, time to peak absorption, and bioavailability after inhalation were 7.02 (+/- 2.34) micrograms.min, -1(16) (+/- 8.0) min, and 0.12 (+/- 0.11), respectively. The data suggest that this analgesic method offers a simple and noninvasive route of administration with a rapid increase of Cfen and a prolonged therapeutic fentanyl concentration. Future studies are required to determine the optimal liposome composition that would produce a sustained stable Cfen within analgesic therapeutic concentrations.
    Anesthesiology 09/1995; 83(2):277-84. · 5.16 Impact Factor