Analysis of EEG Structural Synchrony in Adolescents with Schizophrenic Disorders

Human Physiology 04/2005; 31(3):255-261. DOI: 10.1007/s10747-005-0042-z

ABSTRACT A total of 39 healthy adolescents and 45 adolescents with schizophrenic disorders (mean age 12.3 years) were examined to study the EEG structural synchrony as reflecting temporal synchronization of the operational activity of neuronal networks. A significant decrease in the EEG structural synchrony was observed in the adolescents with schizophrenic disorders as compared to the healthy adolescents. The decrease was detected predominantly in the interhemispheric pairs of EEG derivations, as well as in the pairs related to the frontal, temporal (predominantly on the left), and right parietocentral regions. The findings provide evidence in favor of Friston’s hypothesis of disintegration of cortical electrical activity in schizophrenia and extend the hypothesis in that it is the operational synchrony of cortical activity that might suffer first in schizophrenia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we explore the operational architectonics of alpha activity in different normal and pathological brain states. Aggregated analysis of a set of diverse previously conducted EEG/MEG experimental studies was performed within the same methodological and conceptual framework. It was shown that the characteristics of short alpha activity periods (segments), as well as the spatial structural synchrony of alpha activity, changed considerably in accordance with the type of brain functional state, stimulation, cognitive task, pharmacological influence, and the type of pathology. The results of this study suggest that particular neurophysiological pattern(s) of cortex alpha activity indicates a resting state network, which is characterized by well-defined structure in both the temporal as well as the spatial domain. The optimal functional state of the brain depends upon a delicate metastable balance between local specialized processes and their global integration. Excess or lack of either component would be a deviation from the optimal condition and can lead to pathology. The fact that all observed results were significantly different from surrogate EEG data reflects a non-occasional nature of spatio-temporal dynamics in the operational architectonics of alpha activity. Better understanding of the specific ways in which disrupted dynamics of different characteristics of alpha-generating neuronal assemblies (and their functional connectivity) may underlie neuro/psychopathology might suggest new targets for therapeutic agents.
    International journal of psychophysiology: official journal of the International Organization of Psychophysiology 03/2010; 76(2):93-106. · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cortex functional connectivity associated with hypnosis was investigated in a single highly hypnotizable subject in a normal baseline condition and under neutral hypnosis during two sessions separated by a year. After the hypnotic induction, but without further suggestions as compared to the baseline condition, all studied parameters of local and remote functional connectivity were significantly changed. The significant differences between hypnosis and the baseline condition were observable (to different extent) in five studied independent frequency bands (delta, theta, alpha, beta, and gamma). The results were consistent and stable after 1 year. Based on these findings we conclude that alteration in functional connectivity of the brain may be regarded as a neuronal correlate of hypnosis (at least in very highly hypnotizable subjects) in which separate cognitive modules and subsystems may be temporarily incapable of communicating with each other normally.
    Neuropsychologia 05/2007; 45(7):1452-62. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Children aged 5–7 years with early childhood autism were found to have more marked right-sided predominance of alpha-rhythm spectral power both in baseline conditions and on cognitive loading (counting), along with a decreased level of alpha rhythm power than normal children. The spectral power of the fast rhythms increased from baseline on cognitive loading in healthy children. In early childhood autism, the spectral power of the gamma rhythm in baseline conditions was greater than that in healthy children. On cognitive loading, the spectral power of the fast rhythms changed to a lesser extent than in healthy children. D creased alpha rhythm power in children with autism may be a predictor for the transition from autism to schizophrenia (with both positive and negative symptomatology). The increased spectral power of the fast rhythms in baseline conditions observed here in children with early childhood autism is characteristic of schizophrenia with positive symptomatology, while the decreased reactivity of fast rhythms in response to cognitive loading seen here in patients has been described for schizophrenia with negative symptomatology.
    Neuroscience and Behavioral Physiology 43(1).

Full-text (2 Sources)

Available from
Jun 10, 2014