Article

Response of a Sphagnum bog plant community to elevated CO2 and N supply

Wageningen University
Plant Ecology (Impact Factor: 1.53). 08/2002; 162(1):123-134. DOI:10.1023/A:1020368130679

ABSTRACT The response of plant growth to rising CO2 levels appears todepend on nutrient availability, but it is not known whether the growth of bogplants reacts similarly. We therefore studied the effects of elevatedCO2 in combination with N supply on the growth ofSphagnum mosses and vascular plants in ombrotrophic bogvegetation. Because the growth of Sphagnum is lessnutrient-limited than that of vascular plants, we hypothesized thatSphagnum would benefit from elevated CO2. In ourgreenhouse experiment, peat monoliths (34 cm diameter, 40cm deep) with intact bog vegetation were exposed to ambient (350ppmv) or elevated (560 ppmv) atmosphericCO2 combined with low (no N addition) or high (5 g Nm–2 yr–1 added) N deposition for twogrowing seasons. Elevated atmospheric CO2 had unexpected deleterious effectson the growth of Sphagnum
magellanicum, the dominant Sphagnumspecies. Growth was greatly reduced, particularly in the second growing seasonwhen, regardless of N supply, the mosses looked unhealthy. The negativeCO2 effect was strongest in the warmest months, suggesting a combinedeffect of elevated CO2 and the raised temperatures in the greenhouse.High N deposition favored Rhynchospora
alba, which became the dominant vascular plant speciesduring the experiment. Biomass increased more when N supply was high. There wereno significant effects of elevated CO2 on vascular plants, althoughelevated CO2 combined with high N supply tended to increase theaboveground vascular plant biomass. As Sphagnum is the maincarbon-sequestrating species in bogs and rising atmospheric CO2levels are likely to be followed by increases in temperature, there is an urgentneed for further research on the combined effects of elevated CO2 andincreased temperature on Sphagnum growth in bog ecosystems.

0 0
 · 
0 Bookmarks
 · 
44 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2012). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extents and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extents and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.
    Geoscientific Model Development Discussions 12/2012;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an experimental field in the Netherlands. Two water table treatments were applied: one with constant water tables at 5 cm below the moss surface, and one in which the water table was allowed to drop, resulting in water tables fluctuating between 5 and 21 cm below the moss surface. Sphagnum growth, as well as Sphagnum and vascular plant abundance, were assessed for years. Our results show that the abundance of graminoid species increased most in the constant water table treatment. In contrast, ericoid species cover increased when water tables were allowed to fluctuate. Furthermore, Sphagnum cuspidatum production decreased with fluctuating summer water tables, while Sphagnum magellanicum responded oppositely. From these results we conclude that increased occurrence of periods with low water tables may bring about a shift in dominant Sphagnum species as well as a shift from graminoid to ericoid vascular plant cover, resembling the shift from hollow to lawn or hummock vegetation. The difference in response within functional groups (vascular plants, Sphagnum) may add to the resilience of the ecosystem.ZusammenfassungEs wird erwartet, dass die Klimaveränderung zu einer zunehmenden Häufigkeit von Sommertrockenheit und den damit verbundenen niedrigen Wasserständen in Regenwassermooren führt. Wir untersuchten die Auswirkungen einer periodischen Absenkung des Wasserspiegels in einem Mesokosmos-Experiment. Die Mesokosmen wurden in Südschweden gesammelt und anschließend zu einem Experimentierfeld in die Niederlande gebracht. Es wurden zwei Wasserspiegelbehandlungen durchgeführt: Eine mit einem konstanten Wasserstand fünf Zentimeter unterhalb der Moosoberfläche und eine bei der dem Wasserstand erlaubt wurde abzufallen, was zu Wasserständen führte, die zwischen 5 und 21 cm unterhalb der der Moosoberfläche fluktuierten. Das Sphagnum-Wachstum und die Abundanzen von Sphagnum und Gefäßpflanzen wurden über einen Zeitraum von zweieinhalb Jahren beobachtet. Unsere Ergebnisse zeigen, dass die Abundanzen von grasartigen Arten bei konstantem Wasserspiegel am meisten stieg. Im Gegensatz dazu nahm die Deckung der heideartigen Pflanzen zu, wenn dem Wasserspiegel erlaubt wurde zu fluktuieren. Darüber hinaus nahm die Produktion von S. cuspidatum bei fluktuierenden Sommerwasserständen ab, während S. magellanicum entgegengesetzt reagierte. Aus diesen Ergebnissen schließen wir, dass ein zunehmendes Auftreten von Zeiträumen mit niedrigen Wasserstand eine Veränderung bei den dominanten Sphagnumarten, als auch eine Verschiebung in der Deckung von grasartigen zu heideartigen Gefäßpflanzen mit sich bringt, die der Verschiebung von Senken- zu Rasen- oder Hügelvegetation ähnelt. Die Unterschiede in den Reaktionen der funktionalen Gruppen (Gefäßpflanzen, Sphagnum) könnten zu einer Widerstandsfähigkeit des Ökosystems beitragen.
    Basic and Applied Ecology 07/2009; 10:330-339. · 2.70 Impact Factor
  • Source
    01/2011: pages 213-241; , ISBN: 9781439814246