The Water Vapour Continuum: Brief History and Recent Developments

V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev Square, Tomsk, 634021 Russia
Surveys in Geophysics (Impact Factor: 5.11). 01/2014; 33(3-4):1-21. DOI: 10.1007/s10712-011-9170-y

ABSTRACT The water vapour continuum is characterised by absorption that varies smoothly with wavelength, from the visible to the microwave.
It is present within the rotational and vibrational–rotational bands of water vapour, which consist of large numbers of narrow
spectral lines, and in the many ‘windows’ between these bands. The continuum absorption in the window regions is of particular
importance for the Earth’s radiation budget and for remote-sensing techniques that exploit these windows. Historically, most
attention has focused on the 8–12μm (mid-infrared) atmospheric window, where the continuum is relatively well-characterised,
but there have been many fewer measurements within bands and in other window regions. In addition, the causes of the continuum
remain a subject of controversy. This paper provides a brief historical overview of the development of understanding of the
continuum and then reviews recent developments, with a focus on the near-infrared spectral region. Recent laboratory measurements
in near-infrared windows, which reveal absorption typically an order of magnitude stronger than in widely used continuum models,
are shown to have important consequences for remote-sensing techniques that use these windows for retrieving cloud properties.

KeywordsEarth radiation budget–Water vapour spectroscopy–Water dimers–Remote sensing

Download full-text


Available from: Igor Ptashnik, Jan 13, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (“CKD”) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (“CAVIAR”). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4% and 9%, the change in clear-sky downward surface irradiance is 7% and 18% more negative, and the global-mean precipitation response decreases by 1% and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.
    Quarterly Journal of the Royal Meteorological Society 06/2014; 141(688). DOI:10.1002/qj.2385 · 5.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.
    Surveys in Geophysics 01/2012; 33(3-4):557-564. DOI:10.1007/s10712-011-9157-8 · 5.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Free tropospheric humidity (FTH) is a key parameter of the radiation budget of the Earth. In particular, its distribution over the intertropical belt has been identified as an important contributor to the water vapour feedback. Idealized radiative transfer computations are performed to underscore the need to consider the whole probability distribution function (PDF) rather than the arithmetical mean of the FTH. The analysis confirmed the overwhelming role of the dry end of the PDF in the radiative perturbation of the top of atmosphere longwave budget. The physical and dynamical processes responsible for the maintenance of this dry part of the FTH distribution are reviewed, and the lateral mixing between the tropics and the extra-tropics is revealed as a major element of the dry air dynamics. The evolution of this lateral mixing in the framework of the global warming is discussed, and perspectives of work are listed as a mean of a conclusion.
    Surveys in Geophysics 07/2012; 33(3-4). DOI:10.1007/s10712-011-9169-4 · 5.11 Impact Factor